Title:
|
Nonlinear boundary value problems involving the extrinsic mean curvature operator (English) |
Author:
|
Mawhin, Jean |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
139 |
Issue:
|
2 |
Year:
|
2014 |
Pages:
|
299-313 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The paper surveys recent results obtained for the existence and multiplicity of radial solutions of Dirichlet problems of the type $$ \nabla \cdot \bigg (\frac {\nabla v}{\sqrt {1 - |\nabla v|^2}}\bigg ) = f(|x|,v) \quad \text {in} \ B_R,\quad u = 0 \quad \text {on} \ \partial B_R , $$ where $B_R$ is the open ball of center $0$ and radius $R$ in $\mathbb R^n$, and $f$ is continuous. Comparison is made with similar results for the Laplacian. Topological and variational methods are used and the case of positive solutions is emphasized. The paper ends with the case of a general domain. (English) |
Keyword:
|
extrinsic mean curvature operator |
Keyword:
|
Dirichlet problem |
Keyword:
|
radial solution |
Keyword:
|
positive solution |
Keyword:
|
Leray-Schauder degree |
Keyword:
|
critical point theory |
MSC:
|
35-02 |
MSC:
|
35A16 |
MSC:
|
35B09 |
MSC:
|
35B38 |
MSC:
|
35J20 |
MSC:
|
35J25 |
MSC:
|
35J60 |
MSC:
|
35J87 |
MSC:
|
35J93 |
idZBL:
|
Zbl 06362260 |
idMR:
|
MR3238841 |
DOI:
|
10.21136/MB.2014.143856 |
. |
Date available:
|
2014-07-14T08:34:16Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143856 |
. |
Reference:
|
[1] Ambrosetti, A., Brézis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems.J. Funct. Anal. 122 (1994), 519-543. Zbl 0805.35028, MR 1276168, 10.1006/jfan.1994.1078 |
Reference:
|
[2] Ambrosetti, A., Rabinowitz, P. H.: Dual variational methods in critical point theory and applications.J. Funct. Anal. 14 (1973), 349-381. Zbl 0273.49063, MR 0370183, 10.1016/0022-1236(73)90051-7 |
Reference:
|
[3] Bartnik, R., Simon, L.: Spacelike hypersurfaces with prescribed boundary values and mean curvature.Commun. Math. Phys. 87 (1982), 131-152. Zbl 0512.53055, MR 0680653, 10.1007/BF01211061 |
Reference:
|
[4] Bereanu, C., Jebelean, P.: Multiple critical points for a class of periodic lower semicontinuous functionals.Discrete Contin. Dyn. Syst. 33 (2013), 47-66. Zbl 1281.34024, MR 2972945, 10.3934/dcds.2013.33.47 |
Reference:
|
[5] Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions for some nonlinear problems involving mean curvature operators in Euclidean and Minkowski spaces.Proc. Am. Math. Soc. 137 (2009), 161-169. Zbl 1161.35024, MR 2439437, 10.1090/S0002-9939-08-09612-3 |
Reference:
|
[6] Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions for Neumann problems involving mean curvature operators in Euclidean and Minkowski spaces.Math. Nachr. 283 (2010), 379-391. Zbl 1185.35113, MR 2643019, 10.1002/mana.200910083 |
Reference:
|
[7] Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions for Neumann problems with $\phi$-Laplacians and pendulum-like nonlinearities.Discrete Contin. Dyn. Syst. 28 (2010), 637-648. Zbl 1193.35083, MR 2644761, 10.3934/dcds.2010.28.637 |
Reference:
|
[8] Bereanu, C., Jebelean, P., Mawhin, J.: Variational methods for nonlinear perturbations of singular $\phi$-Laplacians.Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 22 (2011), 89-111. MR 2799910, 10.4171/RLM/589 |
Reference:
|
[9] Bereanu, C., Jebelean, P., Mawhin, J.: Multiple solutions for Neumann and periodic problems with singular $\phi$-Laplacian.J. Funct. Anal. 261 (2011), 3226-3246. Zbl 1241.35076, MR 2835997, 10.1016/j.jfa.2011.07.027 |
Reference:
|
[10] Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions of Neumann problems involving mean extrinsic curvature and periodic nonlinearities.Calc. Var. Partial Differ. Equ. 46 (2013), 113-122. Zbl 1262.35088, MR 3016504, 10.1007/s00526-011-0476-x |
Reference:
|
[11] Bereanu, C., Jebelean, P., Mawhin, J.: The Dirichlet problem with mean curvature operator in Minkowski space---a variational approach.Adv. Nonlinear Stud 14 (2014), 315-326. Zbl 1305.35030, MR 3194356, 10.1515/ans-2014-0204 |
Reference:
|
[12] Bereanu, C., Jebelean, P., Şerban, C.: Nontrivial solutions for a class of one-parameter problems with singular $\phi$-Laplacian.Ann. Univ. Buchar., Math. Ser. 3(61) (2012), 155-162. Zbl 1274.35078, MR 3034970 |
Reference:
|
[13] Bereanu, C., Jebelean, P., Torres, P. J.: Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space.J. Funct. Anal. 264 (2013), 270-287. MR 2995707, 10.1016/j.jfa.2012.10.010 |
Reference:
|
[14] Bereanu, C., Jebelean, P., Torres, P. J.: Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space.J. Funct. Anal. 265 (2013), 644-659. Zbl 1285.35051, MR 3062540, 10.1016/j.jfa.2013.04.006 |
Reference:
|
[15] Bereanu, C., Torres, P. J.: Existence of at least two periodic solutions of the forced relativistic pendulum.Proc. Am. Math. Soc. 140 (2012), 2713-2719. Zbl 1275.34057, MR 2910759, 10.1090/S0002-9939-2011-11101-8 |
Reference:
|
[16] Brézis, H.: Positive solutions of nonlinear elliptic equations in the case of critical Sobolev exponent.Nonlinear Partial Differential Equations and Their Applications, Collége de France Seminar, Vol. III, 129-146, Res. Notes Math. 70, Pitman, Boston, 1982. Zbl 0514.35031, MR 0670270 |
Reference:
|
[17] Brézis, H., Mawhin, J.: Periodic solutions of the forced relativistic pendulum.Differ. Integral Equ. 23 (2010), 801-810. Zbl 1240.34207, MR 2675583 |
Reference:
|
[18] Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents.Commun. Pure Appl. Math. 36 (1983), 437-477. Zbl 0541.35029, MR 0709644, 10.1002/cpa.3160360405 |
Reference:
|
[19] Coelho, I., Corsato, C., Obersnel, F., Omari, P.: Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation.Adv. Nonlinear Stud. 12 (2012), 621-638. Zbl 1263.34028, MR 2976056, 10.1515/ans-2012-0310 |
Reference:
|
[20] Coelho, I., Corsato, C., Rivetti, S.: Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation in a ball.Topol. Methods Nonlinear Anal (to appear). |
Reference:
|
[21] Corsato, C., Obersnel, F., Omari, P., Rivetti, S.: Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space.J. Math. Anal. Appl. 405 (2013), 227-239. MR 3053503, 10.1016/j.jmaa.2013.04.003 |
Reference:
|
[22] Hammerstein, A.: Nichtlineare Integralgleichungen nebst Anwendungen.Acta Math. 54 (1930), 117-176 German. MR 1555304, 10.1007/BF02547519 |
Reference:
|
[23] Mawhin, J.: Semicoercive monotone variational problems.Bull. Cl. Sci., V. Sér., Acad. R. Belg. 73 (1987), 118-130. MR 0938142 |
Reference:
|
[24] Mawhin, J.: Multiplicity of solutions of variational systems involving $\phi$-Laplacians with singular $\phi$ and periodic nonlinearities.Discrete Contin. Dyn. Syst. 32 (2012), 4015-4026. Zbl 1260.34076, MR 2945817, 10.3934/dcds.2012.32.4015 |
Reference:
|
[25] Mawhin, J., Jr., J. R. Ward, Willem, M.: Variational methods and semilinear elliptic equations.Arch. Ration. Mech. Anal. 95 (1986), 269-277. Zbl 0656.35044, MR 0853968, 10.1007/BF00251362 |
Reference:
|
[26] Mawhin, J., Willem, M.: Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations.J. Differ. Equations 52 (1984), 264-287. Zbl 0557.34036, MR 0741271, 10.1016/0022-0396(84)90180-3 |
Reference:
|
[27] Pohožaev, S. I.: On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$.Russian Dokl. Akad. Nauk SSSR 165 (1965), 36-39. MR 0192184 |
Reference:
|
[28] Rabinowitz, P. H.: On a class of functionals invariant under a $\mathbb Z^n$ action.Trans. Am. Math. Soc. 310 (1988), 303-311. MR 0965755 |
Reference:
|
[29] Szulkin, A.: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986), 77-109. Zbl 0612.58011, MR 0837231, 10.1016/S0294-1449(16)30389-4 |
Reference:
|
[30] Willem, M.: Minimax Theorems.Progress in Nonlinear Differential Equations and Their Applications 24 Birkhäuser, Boston (1996). Zbl 0856.49001, MR 1400007 |
. |