Previous |  Up |  Next

Article

Title: Abstract theory of variational inequalities with Lagrange multipliers and application to nonlinear PDEs (English)
Author: Fukao, Takeshi
Author: Kenmochi, Nobuyuki
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 2
Year: 2014
Pages: 391-399
Summary lang: English
.
Category: math
.
Summary: Recently, we established some generalizations of the theory of Lagrange multipliers arising from nonlinear programming in Banach spaces, which enable us to treat not only elliptic problems but also parabolic problems in the same generalized framework. The main objective of the present paper is to discuss a typical time-dependent double obstacle problem as a new application of the above mentioned generalization. Actually, we describe it as a usual parabolic variational inequality and then characterize it as a parabolic inclusion by using the Lagrange multiplier and the nonlinear maximal monotone operator associated with the time differential under time-dependent double obstacles. (English)
Keyword: Lagrange multiplier
Keyword: parabolic variational inequality
MSC: 34G25
MSC: 35K86
MSC: 35R20
MSC: 47J20
idZBL: Zbl 06362268
idMR: MR3238849
DOI: 10.21136/MB.2014.143864
.
Date available: 2014-07-14T08:44:56Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143864
.
Reference: [1] Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities. Applications to Free Boundary Problems. Translated from the Italian.A Wiley-Interscience Publication Wiley, New York (1984). MR 0745619
Reference: [2] Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces.Springer Monographs in Mathematics Springer, Berlin (2010). Zbl 1197.35002, MR 2582280
Reference: [3] Barbu, V., Precupanu, T.: Convexity and Optimization in Banach Spaces.4th ed., Springer Monographs in Mathematics Springer, Dordrecht (2012). Zbl 1244.49001, MR 3025420
Reference: [4] Brézis, H.: Problèmes unilatéraux.J. Math. pur. Appl., IX. Sér. 51 (1972), 1-168 French. Zbl 0237.35001, MR 0428137
Reference: [5] Brézis, H.: Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert.North-Holland Mathematics Studies 5 North-Holland, Amsterdam (1973), French. Zbl 0252.47055, MR 0348562
Reference: [6] Fukao, T., Kenmochi, N.: Abstract theory of variational inequalities and Lagrange multipliers.Discrete Contin. Dyn. Syst., suppl. (2013), 237-246. MR 3462371
Reference: [7] Fukao, T., Kenmochi, N.: Lagrange multipliers in variational inequalities for nonlinear operators of monotone type.Adv. Math. Sci. Appl. 23 (2013), 545-574. Zbl 1300.47081, MR 3236632
Reference: [8] Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications.Advances in Design and Control 15 SIAM, Philadelphia (2008). Zbl 1156.49002, MR 2441683
Reference: [9] Kenmochi, N.: Résolution de Problèmes Variationnels Paraboliques non Linéaires par les Méthodes de Compacité et Monotonie.Thesis, Université Pierre et Marie Curie, Paris 6 French (1979).
Reference: [10] Kenmochi, N.: Solvability of nonlinear evolution equations with time-dependent constraints and applications.Bull. Fac. Educ., Chiba Univ., Part II 30 (1981), 1-87. Zbl 0662.35054
Reference: [11] Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications.Pure and Applied Mathematics 88 Academic Press, New York (1980). Zbl 0457.35001, MR 0567696
Reference: [12] Kokurin, M. Yu.: An exact penalty method for monotone variational inequalities and order optimal algorithms for finding saddle points.Russ. Math. 55 (2011), 19-27. Zbl 1230.65073, MR 2919344
Reference: [13] Yamada, Y.: On evolution equations generated by subdifferential operators.J. Fac. Sci., Univ. Tokyo, Sect. I A 23 (1976), 491-515. Zbl 0343.34053, MR 0425701
Reference: [14] Yamazaki, N., Ito, A., Kenmochi, N.: Global attractors of time-dependent double obstacle problems.Functional Analysis and Global Analysis T. Sunada et al. Springer, Singapore 288-301 (1997). MR 1658070
.

Files

Files Size Format View
MathBohem_139-2014-2_23.pdf 243.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo