Previous |  Up |  Next

Article

Title: Stability for approximation methods of the one-dimensional Kobayashi-Warren-Carter system (English)
Author: Watanabe, Hiroshi
Author: Shirakawa, Ken
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 2
Year: 2014
Pages: 381-389
Summary lang: English
.
Category: math
.
Summary: A one-dimensional version of a gradient system, known as “Kobayashi-Warren-Carter system”, is considered. In view of the difficulty of the uniqueness, we here set our goal to ensure a “stability” which comes out in the approximation approaches to the solutions. Based on this, the Main Theorem concludes that there is an admissible range of approximation differences, and in the scope of this range, any approximation method leads to a uniform type of solutions having a certain common features. Further, this is specified by using the notion of “energy-dissipative solution”, proposed in a relevant previous work. (English)
Keyword: approximation method
Keyword: stability
Keyword: energy-dissipative solution
MSC: 35K51
MSC: 35K67
MSC: 35K87
MSC: 35R06
idZBL: Zbl 06362267
idMR: MR3238848
DOI: 10.21136/MB.2014.143863
.
Date available: 2014-07-14T08:43:20Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143863
.
Reference: [1] Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems.Oxford Mathematical Monographs Clarendon Press, Oxford (2000). Zbl 0957.49001, MR 1857292
Reference: [2] Ito, A., Kenmochi, N., Yamazaki, N.: A phase-field model of grain boundary motion.Appl. Math. 53 (2008), 433-454. Zbl 1199.35138, MR 2469586, 10.1007/s10492-008-0035-8
Reference: [3] Ito, A., Kenmochi, N., Yamazaki, N.: Weak solutions of grain boundary motion model with singularity.Rend. Mat. Appl., VII. Ser. 29 (2009), 51-63. Zbl 1183.35159, MR 2548486
Reference: [4] Ito, A., Kenmochi, N., Yamazaki, N.: Global solvability of a model for grain boundary motion with constraint.Discrete Contin. Dyn. Syst., Ser. S 5 (2012), 127-146. Zbl 1246.35100, MR 2836555
Reference: [5] Kobayashi, R., Warren, J. A., Carter, W. C.: A continuum model of grain boundary.Physica D 140 (2000), 141-150. MR 1752970, 10.1016/S0167-2789(00)00023-3
Reference: [6] Moll, S., Shirakawa, K.: Existence of solutions to the Kobayashi-Warren-Carter system.Calc. Var. Partial Differ. Equ (2013), 1-36 DOI 10.1007/s00526-013-0689-2. MR 3268865, 10.1007/s00526-013-0689-2
Reference: [7] Mosco, U.: Convergence of convex sets and of solutions of variational inequalities.Adv. Math. 3 (1969), 510-585. Zbl 0192.49101, MR 0298508, 10.1016/0001-8708(69)90009-7
Reference: [8] Shirakawa, K., Watanabe, H.: Energy-dissipative solution to a one-dimensional phase field model of grain boundary motion.Discrete Contin. Dyn. Syst., Ser. S 7 (2014), 139-159. Zbl 1275.35132, MR 3082861, 10.3934/dcdss.2014.7.139
Reference: [9] Shirakawa, K., Watanabe, H., Yamazaki, N.: Solvability of one-dimensional phase field systems associated with grain boundary motion.Math. Ann. 356 (2013), 301-330. Zbl 1270.35008, MR 3038131, 10.1007/s00208-012-0849-2
Reference: [10] Watanabe, H., Shirakawa, K.: Qualitative properties of a one-dimensional phase-field system associated with grain boundary.GAKUTO Internat. Ser. Math. Sci. Appl. 36 (2013), 301-328. MR 3203495
.

Files

Files Size Format View
MathBohem_139-2014-2_22.pdf 253.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo