Previous |  Up |  Next

Article

Title: Some notes on oscillation of two-dimensional system of difference equations (English)
Author: Opluštil, Zdeněk
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 2
Year: 2014
Pages: 417-428
Summary lang: English
.
Category: math
.
Summary: Oscillatory properties of solutions to the system of first-order linear difference equations $$ \begin {aligned} \Delta u_k & = q_k v_k \\ \Delta v_k & = -p_k u_{k+1}, \end {aligned} $$ are studied. It can be regarded as a discrete analogy of the linear Hamiltonian system of differential equations. \endgraf We establish some new conditions, which provide oscillation of the considered system. Obtained results extend and improve, in certain sense, results presented in Opluštil (2011). (English)
Keyword: two-dimensional system
Keyword: linear difference equation
Keyword: oscillatory solution
MSC: 39A10
MSC: 39A21
idZBL: Zbl 06362270
idMR: MR3238851
DOI: 10.21136/MB.2014.143866
.
Date available: 2014-07-14T08:49:19Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143866
.
Reference: [1] Agarwal, R. P.: Difference Equations and Inequalities: Theory, Methods and Applications.Pure and Appl. Math. Marcel Dekker, New York (1992). Zbl 0925.39001, MR 1155840
Reference: [2] Chantladze, T., Kandelaki, N., Lomtatidze, A.: Oscillation and nonoscillation criteria for a second order linear equation.Georgian Math. J. 6 (1999), 401-414. Zbl 0944.34025, MR 1692963, 10.1023/A:1022911815254
Reference: [3] Hartman, P.: Ordinary Differential Equations.John Wiley, New York (1964). Zbl 0125.32102, MR 0171038
Reference: [4] Hille, E.: Non-oscillation theorems.Trans. Am. Math. Soc. 64 (1948), 234-252. Zbl 0031.35402, MR 0027925, 10.1090/S0002-9947-1948-0027925-7
Reference: [5] Lomtatidze, A.: Oscillation and nonoscillation criteria for second-order linear differential equations.Georgian Math. J. 4 (1997), 129-138. Zbl 0877.34029, MR 1439591, 10.1023/A:1022978000000
Reference: [6] Lomtatidze, A., Partsvania, N.: Oscillation and nonoscillation criteria for two-dimensional systems of first order linear ordinary differential equations.Georgian Math. J. 6 (1999), 285-298. Zbl 0930.34025, MR 1679448, 10.1023/A:1022187214750
Reference: [7] Nehari, Z.: Oscillation criteria for second-order linear differential equations.Trans. Am. Math. Soc. 85 (1957), 428-445. Zbl 0078.07602, MR 0087816, 10.1090/S0002-9947-1957-0087816-8
Reference: [8] Opluštil, Z.: Oscillatory criteria for two-dimensional system of difference equations.Tatra Mt. Math. Publ. 48 (2011), 153-163. Zbl 1265.39019, MR 2841115
Reference: [9] Polák, L.: Oscillation and nonoscillation criteria for two-dimensional systems of linear ordinary differential equations.Georgian Math. J. 11 (2004), 137-154. Zbl 1064.34019, MR 2065547
Reference: [10] Wintner, A.: A criterion of oscillatory stability.Q. Appl. Math. 7 (1949), 115-117. Zbl 0032.34801, MR 0028499, 10.1090/qam/28499
Reference: [11] Wintner, A.: On the non-existence of conjugate points.Am. J. Math. 73 (1951), 368-380. MR 0042005, 10.2307/2372182
.

Files

Files Size Format View
MathBohem_139-2014-2_25.pdf 232.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo