Previous |  Up |  Next

Article

Title: Forced anisotropic mean curvature flow of graphs in relative geometry (English)
Author: Hoang, Dieu Hung
Author: Beneš, Michal
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 2
Year: 2014
Pages: 429-436
Summary lang: English
.
Category: math
.
Summary: The paper is concerned with the graph formulation of forced anisotropic mean curvature flow in the context of the heteroepitaxial growth of quantum dots. The problem is generalized by including anisotropy by means of Finsler metrics. A semi-discrete numerical scheme based on the method of lines is presented. Computational results with various anisotropy settings are shown and discussed. (English)
Keyword: anisotropy
Keyword: mean curvature flow
Keyword: Finsler metric
Keyword: fused deposition modeling
Keyword: epitaxial growth
MSC: 35K57
MSC: 35K65
MSC: 53C44
MSC: 53C60
MSC: 53C80
MSC: 65M20
MSC: 65N40
idZBL: Zbl 06362271
idMR: MR3238852
DOI: 10.21136/MB.2014.143867
.
Date available: 2014-07-14T08:50:36Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143867
.
Reference: [1] Bellettini, G., Paolini, M.: Anisotropic motion by mean curvature in the context of Finsler geometry.Hokkaido Math. J. 25 (1996), 537-566. Zbl 0873.53011, MR 1416006, 10.14492/hokmj/1351516749
Reference: [2] Beneš, M.: Diffuse-interface treatment of the anisotropic mean-curvature flow.Appl. Math. 48 (2003), 437-453. Zbl 1099.53044, MR 2025297, 10.1023/B:APOM.0000024485.24886.b9
Reference: [3] Deckelnick, K., Dziuk, G.: Discrete anisotropic curvature flow of graphs.M2AN, Math. Model. Numer. Anal. 33 (1999), 1203-1222. Zbl 0948.65138, MR 1736896, 10.1051/m2an:1999141
Reference: [4] Deckelnick, K., Dziuk, G.: A fully discrete numerical scheme for weighted mean curvature flow.Numer. Math. 91 (2002), 423-452. Zbl 0999.65103, MR 1907866, 10.1007/s002110100322
Reference: [5] Dziuk, G.: Discrete anisotropic curve shortening flow.SIAM J. Numer. Anal. 36 (1999), 1808-1830. Zbl 0942.65112, MR 1712165, 10.1137/S0036142998337533
Reference: [6] Hau{ß}er, F., Voigt, A.: A numerical scheme for regularized anisotropic curve shortening flow.Appl. Math. Lett. 19 (2006), 691-698. Zbl 1114.74057, MR 2232241, 10.1016/j.aml.2005.05.011
Reference: [7] Hoang, D. H., Beneš, M., Oberhuber, T.: Numerical simulation of anisotropic mean curvature of graphs in relative geometry.Acta Polytechnica Hungarica 10 (2013), 99-115. MR 3238852
Reference: [8] Pozzi, P.: Anisotropic mean curvature flow for two-dimensional surfaces in higher codimension: a numerical scheme.Interfaces Free Bound. 10 (2008), 539-576. Zbl 1158.65076, MR 2465273
Reference: [9] Rätz, A., Ribalta, A., Voigt, A.: Surface evolution of elastically stressed films under deposition by a diffuse interface model.J. Comput. Phys. 214 (2006), 187-208. Zbl 1088.74035, MR 2208676, 10.1016/j.jcp.2005.09.013
Reference: [10] Srolovitz, D. J.: On the stability of surfaces of stressed solids.Acta Metallurgica 37 (1989), 621-625. 10.1016/0001-6160(89)90246-0
.

Files

Files Size Format View
MathBohem_139-2014-2_26.pdf 2.280Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo