Previous |  Up |  Next

Article

Keywords:
tropical distance; integer length; tropical line; normal matrix; idempotent matrix; caterpillar tree; metric graph
Summary:
Let $p'$ and $q'$ be points in $\mathbb{R}^n$. Write $p'\sim q'$ if $p'-q'$ is a multiple of $(1,\ldots,1)$. Two different points $p$ and $q$ in $\mathbb{R}^n/\sim$ uniquely determine a tropical line $L(p,q)$ passing through them and stable under small perturbations. This line is a balanced unrooted semi-labeled tree on $n$ leaves. It is also a metric graph. If some representatives $p'$ and $q'$ of $p$ and $q$ are the first and second columns of some real normal idempotent order $n$ matrix $A$, we prove that the tree $L(p,q)$ is described by a matrix $F$, easily obtained from $A$. We also prove that $L(p,q)$ is caterpillar. We prove that every vertex in $L(p,q)$ belongs to the tropical linear segment joining $p$ and $q$. A vertex, denoted $pq$, closest (w.r.t tropical distance) to $p$ exists in $L(p,q)$. Same for $q$. The distances between pairs of adjacent vertices in $L(p,q)$ and the distances $\operatorname{d}(p,pq)$, $\operatorname{d}(qp,q)$ and $\operatorname{d}(p,q)$ are certain entries of the matrix $|F|$. In addition, if $p$ and $q$ are generic, then the tree $L(p,q)$ is trivalent. The entries of $F$ are differences (i. e., sum of principal diagonal minus sum of secondary diagonal) of order 2 minors of the first two columns of $A$.
References:
[1] Akian, M., Bapat, R., Gaubert, S.: Max-plus algebra. In: Handbook of Linear Algebra (L. Hobgen, ed.), Chapman and Hall, Boca Raton 2007, chapter 25.
[2] Baccelli, F. L., Cohen, G., Olsder, G. J., Quadrat, J. P.: Synchronization and Linearity. John Wiley, Chichester, New York 1992. MR 1204266 | Zbl 0824.93003
[3] Baker, M., Faber, X.: Metric properties of the tropical Abel-Jacobi map. J. Algebr. Comb. 33 (2011), 349-381. DOI 10.1007/s10801-010-0247-3 | MR 2772537 | Zbl 1215.14060
[4] Billera, L. J., Holmes, S. P., Vogtmann, K.: Geometry of the space of phylogenetic trees. Adv. Appl. Math. 27 (2001), 4, 733-767. DOI 10.1006/aama.2001.0759 | MR 1867931 | Zbl 0995.92035
[5] Brugallé, E.: Un peu de géométrie tropicale. Quadrature 74 (2009), 10-22. DOI 10.1051/quadrature/2009015 | Zbl 1202.14055
[6] Brugallé, E.: Some aspects of tropical geometry. Newsletter Europ. Math. Soc. 83 (2012), 23-28. MR 2934649 | Zbl 1285.14069
[7] Butkovič, P.: Simple image set of $(\operatorname{max},+)$ linear mappings. Discrete Appl. Math. 105 (2000), 73-86. DOI 10.1016/S0166-218X(00)00212-2 | MR 1780462
[8] Butkovič, P.: Max-plus Linear Systems: Theory and Algorithms. Springer-Verlag, Berlin 2010. MR 2681232
[9] Chan, M.: Tropical hyperelliptic curves. J. Algebr. Comb. 37 (2013), 331-359. DOI 10.1007/s10801-012-0369-x | MR 3011346 | Zbl 1266.14050
[10] Cohen, G., Gaubert, S., Quadrat, J. P.: Duality and separation theorems in idempotent semimodules. Linear Algebra Appl. 379 (2004), 395-422. MR 2039751 | Zbl 1042.46004
[11] Cuninghame-Green, R. A.: Minimax algebra. Lecture Notes in Econom and Math. Systems 166, Springer-Verlag, Berlin 1970. MR 0580321 | Zbl 0739.90073
[12] Cuninghame-Green, R. A.: Minimax algebra and applications. In: Adv. Imag. Electr. Phys. 90 (P. Hawkes, ed.), Academic Press, New York 1995, pp. 1-121. Zbl 0739.90073
[13] Cuninghame-Green, R.A., Butkovič, P.: Bases in max-algebra. Linear Algebra Appl. 389 (2004) 107-120. DOI 10.1016/j.laa.2004.03.022 | MR 2080398 | Zbl 1059.15001
[14] Develin, M., Sturmfels, B.: Tropical convexity. Doc. Math. 9 (2004), 1-27; Erratum in Doc. Math. 9 (electronic) (2004), 205-206. MR 2054977 | Zbl 1054.52004
[15] Develin, M., Santos, F., Sturmfels, B.: On the rank of a tropical matrix. In: Discrete and Computational Geometry (E. Goodman, J. Pach and E. Welzl, eds.), MSRI Publications, Cambridge Univ. Press, Cambridge 2005, pp. 213-242. MR 2178322 | Zbl 1095.15001
[16] Einsiedler, M., Kapranov, M., Lind, D.: Non-archimedean amoebas and tropical varieties. J. Reine Angew. Math. 601 (2006), 139-157. MR 2289207 | Zbl 1115.14051
[17] Gathmann, A.: Tropical algebraic geometry. Jahresber. Deutsch. Math.-Verein 108 (2006), 1, 3-32. MR 2219706 | Zbl 1109.14038
[18] Gaubert, S., Plus, Max: Methods and applications of $(\operatorname{max}, +)$ linear algebra.
[19] Gondran, M., Minoux, M.: Graphs, Dioids and Semirings. New Models and Algorithms. Springer-Verlag, Berlin 2008. MR 2389137 | Zbl 1201.16038
[20] (ed.), J. Gunawardena: Idempotency. Publications of the Newton Institute, Cambridge Univ. Press, Cambridge 1998. MR 1608365 | Zbl 1144.68006
[21] Itenberg, I., Brugallé, E., Tessier, B.: Géométrie tropicale. Editions de l'École Polythecnique, Paris, 2008.
[22] Itenberg, I., Mikhalkin, G., Shustin, E.: Tropical Algebraic Geometry. Birkhäuser, Basel 2007. MR 2292729 | Zbl 1165.14002
[23] Johnson, M., Kambites, M.: Idempotent tropical matrices and finite metric spaces. Adv. in Geom. 14 (2014), 2, 253-276. DOI: 10.1515/advgeom-2013-0034 ( http://dx.doi.org/10.1515/advgeom-2013-0034) DOI 10.1515/advgeom-2013-0034
[24] Jiménez, A., Puente, M. J. de la: Six combinatorial classes of maximal convex tropical polyhedra. ArXiv: 1205.4162 ( http://arxiv.org/abs/1205.4162), 2012.
[25] Joyner, D., Ksir, A., Melles, C. G.: Automorphism groups on tropical curves. Some cohomology calculations. Beitr. Algebra Geom. 53 (2012), 1, 41-56. DOI 10.1007/s13366-011-0049-3 | MR 2890362 | Zbl 1286.14077
[26] Linde, J., Puente, M. J. de la: Matrices commuting with a given normal tropical matrix. ArXiv: 1209.0660v2 ( http://arxiv.org/abs/1209.0660), 2014.
[27] Litvinov, G. L., Maslov, V. P.: Idempotent mathematics and mathematical physics. Proc. Vienna 2003, American Mathematical Society, Contemp. Math. 377 (2005). MR 2145152 | Zbl 1069.00011
[28] Litvinov, G. L., Sergeev, S. N.: Tropical and idempotent mathematics. Proc. Moscow 2007, American Mathematical Society, Contemp. Math. 495 (2009). MR 2581510 | Zbl 1172.00019
[29] Mikhalkin, G.: Tropical geometry and its applications. In: Proc. International Congress of Mathematicians, ICM Madrid 2006, (M. Sanz-Solé et al., eds.), Invited lectures, v. II, EMS Ph., Zurich 2006, pp. 827-852. MR 2275625 | Zbl 1103.14034
[30] Mikhalkin, G.: Moduli spaces of rational tropical curves. In: Proc. 13th Gökova Geometry-Topology Conference 2006 (S. Akbulut, T. Onder and R. J. Stern, eds.), International Press, Cambridge, MA 2007, pp. 39-51. MR 2404949 | Zbl 1203.14027
[31] Mikhalkin, G.: What is a tropical curve?. Notices AMS 2007, 511-513. MR 2305295
[32] Puente, M. J. de la: On tropical Kleene star matrices and alcoved polytopes. Kybernetika 49 (2013), 6, 897-910. MR 3182647
[33] Richter-Gebert, J., Sturmfels, B., Theobald, T.: First steps in tropical geometry. In: [27], pp. 289-317. MR 2149011 | Zbl 1093.14080
[34] Speyer, D., Sturmfels, B.: The tropical Grassmannian. Adv. Geom. 4 (2004), 389-411. DOI 10.1515/advg.2004.023 | MR 2071813 | Zbl 1065.14071
[35] Speyer, D., Sturmfels, B.: Tropical mathematics. Math. Mag. 82 (2009), 163-173. DOI 10.4169/193009809X468760 | MR 2522909 | Zbl 1227.14051
[36] Sturmfels, B.: Solving systems of polynomial equations. CBMS Regional Conference Series in Math. 97, AMS, Providence 2002. MR 1925796 | Zbl 1101.13040
[37] Sturmfels, B., Yu, J.: Classification of six-point metrics. Electron. J. Combinatorics 11 (2004), 44 pp. MR 2097310 | Zbl 1053.52019
[38] Tabera, L. F.: Tropical constructive Pappus's theorem. IMRN 39 (2005), 2373-2389. DOI 10.1155/IMRN.2005.2373 | MR 2181355
[39] Viro, O.: Dequantization of real algebraic geometry on logarithmic paper. European Congress of Mathematics, Vol. I (Barcelona 2000), Prog. Math. 201, Birkhäuser, Basel, 2001, pp. 135-146. MR 1905317 | Zbl 1024.14026
[40] Viro, O.: On basic concepts of tropical geometry. Proc. Steklov Inst. Math. 273 (2011), 252-282. MR 2893551 | Zbl 1237.14074
[41] Wagneur, E.: Finitely generated moduloïds. The existence and unicity problem for bases. In: Analysis and Optimization of Systems, Antibes, 1988 (J. L. Lions and A. Bensoussan, eds.), LNCIS 111, Springer-Verlag, Berlin 1988, pp. 966-976. MR 0956331
[42] Yoeli, M.: A note on a generalization of boolean matrix theory. Amer. Math. Monthly 68 (1961), 6, 552-557. DOI 10.2307/2311149 | MR 0126472 | Zbl 0115.02103
[43] Zimmermann, K.: Extremální algebra. Výzkumná publikace ekonomicko-matematické laboratoře při ekonomickém ústavu ČSAV 46 (1976), Prague 1976, in Czech.
Partner of
EuDML logo