Previous |  Up |  Next

Article

Title: Sliding subspace design based on linear matrix inequalities (English)
Author: Tapia, Alán
Author: Márquez, Raymundo
Author: Bernal, Miguel
Author: Cortez, Joaquín
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 3
Year: 2014
Pages: 436-449
Summary lang: English
.
Category: math
.
Summary: In this work, an alternative for sliding surface design based on linear and bilinear matrix inequalities is proposed. The methodology applies for reduced and integral sliding mode control, both continuous- and discrete-time; it takes advantage of the Finsler's lemma to provide a greater degree of freedom than existing approaches for sliding subspace design. The sliding surfaces thus constructed are systematically found via convex optimization techniques, which are efficiently implemented in commercially available software. Examples are provided to illustrate the effectiveness of the proposed approach. (English)
Keyword: sliding mode control
Keyword: variable structure
Keyword: sliding subspace design
Keyword: linear matrix inequalities
MSC: 51M16
MSC: 90C25
MSC: 90C90
MSC: 93B12
MSC: 93B40
MSC: 93C05
idZBL: Zbl 1298.93110
idMR: MR3245539
DOI: 10.14736/kyb-2014-3-0436
.
Date available: 2014-07-29T13:19:31Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143884
.
Reference: [1] Abidi, K., Xu, J.-X., Xinghuo, Y.: On the discrete-time integral sliding-mode control..IEEE Trans. Automat. Control 52 (2007), 4, 709-715. MR 2310051, 10.1109/TAC.2007.894537
Reference: [2] Ackermann, J., Utkin, V.: Sliding mode control design based on Ackermann's formula..IEEE Trans. Automat. Control 43 (1998), 2, 234-237. Zbl 0904.93004, MR 1605958, 10.1109/9.661072
Reference: [3] Arezelier, D., Angulo, M., Bernussou, J.: Sliding surface design by quadratic stabilization and pole placement..In: Proc. 4th European Control Conference, 1997.
Reference: [4] Boyd, S., Ghaoui, L. El, Féron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory..Stud. Appl. Math. 15 (1994). Zbl 0816.93004, MR 1284712
Reference: [5] Castaños, F., Fridman, L.: Analysis and design of integral sliding manifolds for systems with unmatched perturbations..IEEE Trans. Automat. Control 51 (2006), 5, 853-858. MR 2232613, 10.1109/TAC.2006.875008
Reference: [6] Chang, J.-L.: Discrete sliding mode control of MIMO linear systems..Asian J. Control 4 (2002), 2, 217-222. 10.1111/j.1934-6093.2002.tb00348.x
Reference: [7] Chen, Y.-P., Chang, J.-L.: A new method for constructing sliding surfaces of linear time-invariant systems..Internat. J. System Sci. 31 (2000), 4, 417-420. Zbl 1080.93526, 10.1080/002077200290993
Reference: [8] Choi, H.: On the existence of linear sliding surface for a class of uncertain dynamic systems with mismatched uncertainties..Automatica 37 (1999), 1707-1715. MR 1831849, 10.1016/S0005-1098(99)00081-3
Reference: [9] Choi, H.: LMI-Based Sliding Surface Design for Integral Sliding Mode Control of Mismatched Uncertain Systems..IEEE Trans. Automat. Control 52 (2007), 4, 736-742. MR 2310056, 10.1109/TAC.2007.894543
Reference: [10] Cruz-Zavala, E., Moreno, J., Fridman, L.: Uniform sliding mode controllers and uniform sliding surfaces..IMA J. Math. Control Inform. 29 (2012), 4, 491-505. Zbl 1256.93032, MR 3002708, 10.1093/imamci/dns005
Reference: [11] Oliveira, M. C. De, Skelton, R. E.: Stability Tests for Constrained Linear Systems. In Perspectives in Robust Control..Springer, Berlin 1994.
Reference: [12] Dorling, C. M., Zinober, A. S. I.: Two approaches to hyperplane desing in multivariable variable structure control systems..Internat. J. Control 44 (1986), 1, 65-82. 10.1080/00207178608933583
Reference: [13] Dorling, C. M., Zinober, A. S. I.: Robust hyperplane desing in multivariable variable structure control systems..Internat. J. Control 48 (1988), 5, 2043-2054. MR 0973773, 10.1080/00207178808906304
Reference: [14] Draženović, B., Milosavljević, C., Veselić, B., Gligić, V.: Comprehensive approach to sliding subspace design in linear time invariant systems..In: IEEE International Workshop on Variable Structure Systems 2012, pp. 473-478.
Reference: [15] Edwards, C.: Sliding Mode Control: Theory and Applications..Taylor and Francis, London 1998.
Reference: [16] Edwards, C.: A practical method for the design of sliding mode controllers using linear matrix inequalities..Automatica 40 (2004), 10, 1761-1769. Zbl 1079.93014, MR 2155468, 10.1016/j.automatica.2004.05.004
Reference: [17] Fridman, L., Moreno, J., Iriarte, R.: Sliding Modes After the First Decade of the 21st Century..Springer, Berlin 2011. MR 3087279
Reference: [18] Hermann, C., Spurgeon, S. K., Edwards, C.: A robust sliding mode output tracking control for a class of relative degree zero and non-minimum phase plants: A chemical process application..Internat. J. Control 72 (2001), 1194-1209. MR 1852597, 10.1080/00207170110061040
Reference: [19] Huang, J. Y., Yeung, K. S.: Arbitrary eigenvalue assignment via switching hyperplanes design scheme and extension of Ackermann's formula..In: IEEE Conference on Computer, Communication, Control and Power Engineering 4 (1993), 17-20.
Reference: [20] Hung, Y. S., Macfarlan, A. G. J.: Multivariable Feedback: A Quasi-Classical Approach. Volume 40..Springer-Verlag, Berlin 1982. MR 0790848
Reference: [21] Kautsky, J., Nichols, N. K., Dooren, P. Van: Robust pole assignment in linear state feedbacks..Internat. J. Control 41 (1985), 2, 1129-1155. MR 0792933, 10.1080/0020718508961188
Reference: [22] Kočvara, M., Sting, M.: Penbmi, version 2.1..www.penopt.com, 2008.
Reference: [23] Mehta, A. J., Bandyopadhyay, B., Inoue, A.: Reduced-order observer design for servo system using duality to discrete-time sliding-surface design..IEEE Trans. Industr. Electronics 57 (2010), 11, 3793-3800. 10.1109/TIE.2010.2040555
Reference: [24] Pan, Y., Kumar, K. D., Liu, G.: Reduced-order design of high-order sliding mode control system..Internat. J. Robust and Nonlinear Control 21 (2011), 18, 2064-2078. Zbl 1237.93037, MR 2871742, 10.1002/rnc.1678
Reference: [25] Tanaka, K., Wang, H. O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach..John Wiley and Sons, New York 2001.
Reference: [26] Utkin, U.: Sliding Modes in Control and Optimization..Springer, Berlin 1992. Zbl 0748.93044, MR 1295845
Reference: [27] Utkin, V., Shi, J.: Integral sliding mode in systems operating under uncertainty conditions..In: Conference on Decision and Control 1996.
.

Files

Files Size Format View
Kybernetika_50-2014-3_8.pdf 510.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo