Title:
|
A note on the number of $S$-Diophantine quadruples (English) |
Author:
|
Luca, Florian |
Author:
|
Ziegler, Volker |
Language:
|
English |
Journal:
|
Communications in Mathematics |
ISSN:
|
1804-1388 |
Volume:
|
22 |
Issue:
|
1 |
Year:
|
2014 |
Pages:
|
49-55 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $(a_1,\dots , a_m)$ be an $m$-tuple of positive, pairwise distinct integers. If for all $1\leq i< j \leq m$ the prime divisors of $a_ia_j+1$ come from the same fixed set $S$, then we call the $m$-tuple $S$-Diophantine. In this note we estimate the number of $S$-Diophantine quadruples in terms of $|S|=r$. (English) |
Keyword:
|
Diophantine equations |
Keyword:
|
$S$-unit equations |
Keyword:
|
$S$-Diophantine tuples |
MSC:
|
11D45 |
MSC:
|
11N32 |
idZBL:
|
Zbl 06359722 |
idMR:
|
MR3233726 |
. |
Date available:
|
2014-08-27T08:58:33Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143905 |
. |
Reference:
|
[1] Amoroso, F., Viada, E.: Small points on subvarieties of a torus.Duke Math. J., 150, 3, 2009, 407-442, Zbl 1234.11081, MR 2582101, 10.1215/00127094-2009-056 |
Reference:
|
[2] Bugeaud, Y., Luca, F.: A quantitative lower bound for the greatest prime factor of $(ab+1)(bc+1)(ca+1)$.Acta Arith., 114, 3, 2004, 275-294, Zbl 1122.11060, MR 2071083, 10.4064/aa114-3-3 |
Reference:
|
[3] Corvaja, P., Zannier, U.: On the greatest prime factor of $(ab+1)(ac+1)$.Proc. Amer. Math. Soc., 131, 6, 2003, 1705-1709, (electronic). Zbl 1077.11052, MR 1955256, 10.1090/S0002-9939-02-06771-0 |
Reference:
|
[4] Erdős, P., Turan, P.: On a Problem in the Elementary Theory of Numbers.Amer. Math. Monthly, 41, 10, 1934, 608-611, Zbl 0010.29401, MR 1523239, 10.2307/2301909 |
Reference:
|
[5] Evertse, J.-H.: On equations in $S$-units, the Thue-Mahler equation.Invent. Math., 75, 3, 1984, 561-584, MR 0735341, 10.1007/BF01388644 |
Reference:
|
[6] Evertse, J.-H., Ferretti, R. G.: A further improvement of the quantitative subspace theorem.Ann. of Math. (2), 177, 2, 2013, 513-590, MR 3010806, 10.4007/annals.2013.177.2.4 |
Reference:
|
[7] Evertse, J.-H., Schlickewei, H. P., Schmidt, W. M.: Linear equations in variables which lie in a multiplicative group.Ann. of Math. (2), 155, 3, 2002, 807-836, Zbl 1026.11038, MR 1923966, 10.2307/3062133 |
Reference:
|
[8] Győry, K., Sárközy, A., Stewart, C. L.: On the number of prime factors of integers of the form $ab+1$.Acta Arith., 74, 4, 1996, 365-385, Zbl 0857.11047, MR 1378230 |
Reference:
|
[9] Hernández, S., Luca, F.: On the largest prime factor of $(ab+1)(ac+1)(bc+1)$.Bol. Soc. Mat. Mexicana (3), 9, 2, 2003, 235-244, Zbl 1108.11030, MR 2029272 |
Reference:
|
[10] Luca, F.: On the greatest common divisor of $u-1$ and $v-1$ with $u$ and $v$ near $S$-units.Monatsh. Math., 146, 3, 2005, 239-256, MR 2184226, 10.1007/s00605-005-0303-6 |
Reference:
|
[11] Mihăilescu, P.: Primary cyclotomic units and a proof of Catalan's conjecture.J. Reine Angew. Math., 572, 2004, 167-195, Zbl 1067.11017, MR 2076124 |
Reference:
|
[12] Sárközy, A., Stewart, C. L.: On divisors of sums of integers. II.J. Reine Angew. Math., 365, 1986, 171-191, Zbl 0578.10045, MR 0826157 |
Reference:
|
[13] Sárközy, A., Stewart, C. L.: On divisors of sums of integers. V.Pacific J. Math., 166, 2, 1994, 373-384, Zbl 0841.11049, MR 1313461, 10.2140/pjm.1994.166.373 |
Reference:
|
[14] Sárközy, A., Stewart, C. L.: On prime factors of integers of the form $ab+1$.Publ. Math. Debrecen, 56, 3--4, 2000, 559-573, Dedicated to Professor Kálmán Győry on the occasion of his 60th birthday.. Zbl 0960.11045, MR 1766000 |
Reference:
|
[15] Stewart, C. L., Tijdeman, R.: On the greatest prime factor of $(ab+1)(ac+1)(bc+1)$.Acta Arith., 79, 1, 1997, 93-101, Zbl 0869.11072, MR 1438120 |
Reference:
|
[16] Szalay, L., Ziegler, V.: $S$-diophantine quadruples with $S={2,q}$.(in preperation). |
Reference:
|
[17] Szalay, L., Ziegler, V.: On an $S$-unit variant of Diophantine $m$-tuples.Publ. Math. Debrecen, 83, 1--2, 2013, 97-121, Zbl 1274.11095, MR 3081229, 10.5486/PMD.2013.5521 |
Reference:
|
[18] Szalay, L., Ziegler, V.: $S$-diophantine quadruples with two primes congruent 3 modulo 4.Integers, 13, 2013, Paper No. A80, 9pp.. MR 3167927 |
. |