| Title: | Existence of entropy solutions for degenerate quasilinear elliptic equations in $L^1$ (English) | 
| Author: | Cavalheiro, Albo Carlos | 
| Language: | English | 
| Journal: | Communications in Mathematics | 
| ISSN: | 1804-1388 | 
| Volume: | 22 | 
| Issue: | 1 | 
| Year: | 2014 | 
| Pages: | 57-69 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | In this article, we prove the existence of entropy solutions for the Dirichlet problem $$ (P)\begin {cases} -\mathrm{div} [{\omega }(x){\cal A} (x,u,{\nabla }u)]=f(x)-\mathrm{div} (G),&\text {in }\Omega \\ u(x) = 0,&\text {on }{\partial \Omega } \end {cases} $$ where $\Omega $ is a bounded open set of $\real ^N$, $N\geq 2$, $f \in L^1(\Omega )$ and $G/{\omega } \in [L^{p'}(\Omega , \omega )]^N$. (English) | 
| Keyword: | degenerate elliptic equations | 
| Keyword: | entropy solutions | 
| Keyword: | weighted Sobolev spaces | 
| MSC: | 35A01 | 
| MSC: | 35J25 | 
| MSC: | 35J60 | 
| MSC: | 35J62 | 
| MSC: | 35J70 | 
| idZBL: | Zbl 1302.35180 | 
| idMR: | MR3233727 | 
| . | 
| Date available: | 2014-08-27T09:00:24Z | 
| Last updated: | 2020-01-05 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/143906 | 
| . | 
| Reference: | [1] Bélinan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vasquez, J.L.: An $L^1$ theory of existence and uniqueness of solutions of nonlinear elliptic equations.Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22, 2, 1995, 241-273,  MR 1354907 | 
| Reference: | [2] Boccardo, L., Murat, F., Puel, J.P.: Existence of bounded solutions for nonlinear elliptic unilateral problems.Ann. Mat. Pura Appl., 152, 1988, 183-196,  MR 0980979 | 
| Reference: | [3] Cavalheiro, A.C.: The solvability of Dirichlet problem for a class of degenerate elliptic equations with $L^1$-data.Applicable Analysis, 85, 8, 2006, 941-961,  Zbl 1142.35042, MR 2250779 | 
| Reference: | [4] Cavalheiro, A.C.: Existence of solutions for some degenerate quasilinear elliptic equations.Le Matematiche, LXIII, II, 2008, 101-112,  Zbl 1189.35124, MR 2531653 | 
| Reference: | [5] Piat, V. Chiadò, Cassano, F. Serra: Relaxation of degenerate variational integrals.Nonlinear Anal., 22, 1994, 409-429,  MR 1266369, 10.1016/0362-546X(94)90165-1 | 
| Reference: | [6] Fabes, E., Kenig, C., Serapioni, R.: The local regularity of solutions of degenerate elliptic equations.Comm. PDEs, 7, 1982, 77-116,  Zbl 0498.35042, MR 0643158, 10.1080/03605308208820218 | 
| Reference: | [7] Folland, G.B.: Real Analysis.1984, Wiley-Interscience, New York,  Zbl 0549.28001, MR 0767633 | 
| Reference: | [8] Garcia-Cuerva, J., Francia, J.L. Rubio de: Weighted Norm Inequalities and Related Topics.116, 1985, North-Holland Mathematics Studies,  MR 0807149 | 
| Reference: | [9] Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations.1993, Oxford Math. Monographs, Clarendon Press,  Zbl 0780.31001, MR 1207810 | 
| Reference: | [10] Kufner, A., John, O., Fučík, S.: Function Spaces.1977, Noordhoof International Publishing, Leyden,  MR 0482102 | 
| Reference: | [11] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function.Trans. Am. Math. Soc., 165, 1972, 207-226,  Zbl 0236.26016, MR 0293384, 10.1090/S0002-9947-1972-0293384-6 | 
| Reference: | [12] Stein, E.: Harmonic Analysis.1993, Princeton University Press,  Zbl 0821.42001, MR 1232192 | 
| Reference: | [13] Torchinsky, A.: Real-Variable Methods in Harmonic Analysis.1986, Academic Press, San Diego,  Zbl 0621.42001, MR 0869816 | 
| Reference: | [14] Turesson, B.O.: Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Mathematics.1736, 2000, Springer-Verlag,  MR 1774162 | 
| . |