Full entry |
PDF
(0.2 MB)
Feedback

third order nonlinear differential equation; singular nonlinearity; positive solution; decaying solution; asymptotic behavior; regularly varying functions

References:

[1] Bingham, N. H., Goldie, C. M., Teugels, J. L.: **Regular Variation**. Encyklopedia of Mathematics and its Applications 27, Cambridge University Press, Cambridge, 1987. MR 0898871 | Zbl 0617.26001

[2] Evtukhov, V. M., Samoilenko, A. M.: **Asymptotic representations of solutions of nonautonomous ordinary differential equations with regularly varying nonlinearities**. Differ. Uravn. 47 (2011), 628–650, (in Russian); translation in Differ. Equ. 47 (2011), 627–649. DOI 10.1134/S001226611105003X | MR 2918280 | Zbl 1242.34092

[3] Jaroš, J., Kusano, T., Tanigawa, T.: **Asymptotic analysis of positive solutions of a class of third order nonlinear differential equations in the framework of regular variation**. Math. Nachr. 286 (2013), 205–223. DOI 10.1002/mana.201100296 | MR 3021476 | Zbl 1269.34054

[4] Jaroš, J., Kusano, T., Tanigawa, T.: **Existence and precise asymptotics of positive solutions for a class of nonlinear differenctial equations of the third order**. Georgian Math. J. 20 (2013), 493–531. DOI 10.1515/gmj-2013-0027 | MR 3100967

[5] Kamo, K., Usami, H.: **Asymptotic forms of positive solutions of quasilinear ordinary differential equations with singular nonlinearities**. Nonlinear Anal. 68 (2008), 1627–1639. DOI 10.1016/j.na.2006.12.045 | MR 2388837 | Zbl 1140.34023

[6] Kusano, T., Manojlović, J.: **Asymptotic behavior of positive solutions of odd order Emden–Fowler type differential equations in the framework of regular variation**. Electron. J. Qual. Theory Differ. Equ. 45 (2012), 1–23. DOI 10.14232/ejqtde.2012.1.45 | MR 2943099

[7] Kusano, T., Manojlović, J.: **Asymptotic behavior of positive solutions of sublinear differential equations of Emden–Fowler type**. Comput. Math. Appl. 62 (2011), 551–565. DOI 10.1016/j.camwa.2011.05.019 | MR 2817892 | Zbl 1228.34072

[8] Kusano, T., Tanigawa, T.: **Positive solutions to a class of second order differential equations with singular nonlinearities**. Appl. Anal. 69 (1998), 315–331. MR 1706534 | Zbl 0923.34032

[9] Marić, V.: **Regular Variation and Differential Equations**. Lecture notes in Mathematics 1726, Springer-Verlag, Berlin–Heidelberg, 2000. MR 1753584

[10] Tanigawa, T.: **Positive solutions to second order singular differential equations involving the one-dimensional M-Laplace operator**. Georgian Math. J. 6 (1999), 347–362. DOI 10.1023/A:1022965616534 | MR 1693224 | Zbl 0933.34028

[11] Taylor, A. E.: **L’Hospital’s rule**. Amer. Math. Monthly 59 (1952), 20–24. MR 0044602 | Zbl 0046.06202