Previous |  Up |  Next

Article

Title: Existence of solutions for a class of second-order $p$-Laplacian systems with impulsive effects (English)
Author: Chen, Peng
Author: Tang, Xianhua
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 5
Year: 2014
Pages: 543-570
Summary lang: English
.
Category: math
.
Summary: The purpose of this paper is to study the existence and multiplicity of a periodic solution for the non-autonomous second-order system \begin {gather} \frac {{\rm d}}{{\rm d}t}(|\dot {u}(t)|^{p-2}\dot {u}(t)) =\nabla F(t, u(t)),\quad \text {\rm a.e.}\ t\in [0,T],\nonumber \\ u(0)-u(T)=\dot {u}(0)-\dot {u}(T)=0,\nonumber \\ \Delta \dot {u}^i(t_{j})=\dot {u}^i(t_j^+)-\dot {u}^i(t_j^-)=I_{ij}(u^i(t_j)),\ i = 1, 2,\dots , N;\ j = 1, 2,\dots ,m.\nonumber \end {gather} By using the least action principle and the saddle point theorem, some new existence theorems are obtained for second-order $p$-Laplacian systems with or without impulse under weak sublinear growth conditions, improving some existing results in the literature. (English)
Keyword: second-order $p$-Laplacian Hamiltonian systems
Keyword: impulsive effect
Keyword: critical point theory
MSC: 34B15
MSC: 34B37
MSC: 34C25
MSC: 58E30
MSC: 58E50
idZBL: Zbl 06391450
idMR: MR3255795
DOI: 10.1007/s10492-014-0071-5
.
Date available: 2014-09-29T09:01:14Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143930
.
Reference: [1] Agarwal, R. P., O'Regan, D.: Multiple nonnegative solutions for second order impulsive differential equations.Appl. Math. Comput. 114 (2000), 51-59. Zbl 1047.34008, MR 1775121, 10.1016/S0096-3003(99)00074-0
Reference: [2] Berger, M. S., Schechter, M.: On the solvability of semilinear gradient operator equations.Adv. Math. 25 (1977), 97-132. Zbl 0354.47025, MR 0500336, 10.1016/0001-8708(77)90001-9
Reference: [3] Chen, P., Tang, X. H.: Existence of solutions for a class of $p$-Laplacian systems with impulsive effects.Taiwanese J. Math. 16 (2012), 803-828. Zbl 1251.34044, MR 2917240, 10.11650/twjm/1500406658
Reference: [4] Lakshmikantham, V., Baĭnov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations.Series in Modern Applied Mathematics 6 World Scientific, Singapore (1989). MR 1082551
Reference: [5] Lee, E. K., Lee, Y. H.: Multiple positive solutions of singular two point boundary value problems for second order impulsive differential equations.Appl. Math. Comput. 158 (2004), 745-759. Zbl 1069.34035, MR 2095700, 10.1016/j.amc.2003.10.013
Reference: [6] Lin, X. N., Jiang, D. Q.: Multiple positive solutions of Dirichlet boundary value problems for second order impulsive differential equations.J. Math. Anal. Appl. 321 (2006), 501-514. Zbl 1103.34015, MR 2241134, 10.1016/j.jmaa.2005.07.076
Reference: [7] Mawhin, J.: Semi-coercive monotone variational problems.Bull. Cl. Sci., V. Sér., Acad. R. Belg. 73 (1987), 118-130. Zbl 0647.49007, MR 0938142
Reference: [8] Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems.Applied Mathematical Sciences 74 Springer, New York (1989). Zbl 0676.58017, MR 0982267, 10.1007/978-1-4757-2061-7
Reference: [9] Mawhin, J., Willem, M.: Critical points of convex perturbations of some indefinite quadratic forms and semilinear boundary value problems at resonance.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986), 431-453. Zbl 0678.35091, MR 0870864, 10.1016/S0294-1449(16)30376-6
Reference: [10] Nieto, J. J., O'Regan, D.: Variational approach to impulsive differential equations.Nonlinear Anal., Real World Appl. 10 (2009), 680-690. Zbl 1167.34318, MR 2474254
Reference: [11] Rabinowitz, P. H.: On subharmonic solutions of hamiltonian systems.Commun. Pure Appl. Math. 33 (1980), 609-633. Zbl 0425.34024, MR 0586414, 10.1002/cpa.3160330504
Reference: [12] Rabinowitz, P. H.: Minimax methods in critical point theory with applications to differential equations.Reg. Conf. Ser. Math. 65 American Mathematical Society, Providence (1986). Zbl 0609.58002, MR 0845785
Reference: [13] Samoilenko, A. M., Perestyuk, N. A.: Impulsive Differential Equations.Transl. from the Russian. World Scientific Series on Nonlinear Science, Series A. 14. Singapore (1995). Zbl 0837.34003, MR 1355787
Reference: [14] Sun, J. T., Chen, H. B., Yang, L.: The existence and multiplicity of solutions for an impulsive differential equation with two parameters via a variational method.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 440-449. Zbl 1198.34037, MR 2650827, 10.1016/j.na.2010.03.035
Reference: [15] Tang, C. L.: Periodic solutions of non-autonomous second order systems with $\gamma$-quasisubadditive potential.J. Math. Anal. Appl. 189 (1995), 671-675. Zbl 0824.34043, MR 1312546, 10.1006/jmaa.1995.1044
Reference: [16] Tang, C. L.: Periodic solutions of non-autonomous second order systems.J. Math. Anal. Appl. 202 (1996), 465-469. Zbl 0857.34044, MR 1406241, 10.1006/jmaa.1996.0327
Reference: [17] Tang, C. L.: Periodic solutions of nonautonomous second order systems with sublinear nonlinearity.Proc. Am. Math. Soc. 126 (1998), 3263-3270. MR 1476396, 10.1090/S0002-9939-98-04706-6
Reference: [18] Tang, C. L., Wu, X. P.: Periodic solutions for second order systems with not uniformly coercive potential.J. Math. Anal. Appl. 259 (2001), 386-397. Zbl 0999.34039, MR 1842066, 10.1006/jmaa.2000.7401
Reference: [19] Tang, X. H., Meng, Q.: Solutions of a second-order Hamiltonian system with periodic boundary conditions.Nonlinear Anal., Real World Appl. 11 (2010), 3722-3733. Zbl 1223.34024, MR 2683825
Reference: [20] Willem, M.: Forced oscillations of Hamiltonian systems.Publ. Math. Fac. Sci. Besançon, Anal. Non Lineaire Annee 1980-1981, Expose No. 4 French (1981).
Reference: [21] Wu, X.: Saddle point characterization and multiplicity of periodic solutions of non-autonomous second order systems.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 58 (2004), 899-907. Zbl 1058.34053, MR 2086063, 10.1016/j.na.2004.05.020
Reference: [22] Wu, X. P., Tang, C. L.: Periodic solutions of a class of non-autonomous second-order systems.J. Math. Anal. Appl. 236 (1999), 227-235. Zbl 0971.34027, MR 1704579, 10.1006/jmaa.1999.6408
Reference: [23] Yang, X. X., Shen, J. H.: Nonlinear boundary value problems for first order impulsive functional differential equations.Appl. Math. Comput. 189 (2007), 1943-1952. Zbl 1125.65074, MR 2332147, 10.1016/j.amc.2006.12.085
Reference: [24] Zavalishchin, S. T., Sesekin, A. N.: Dynamics Impulse System: Theory and Applications.Mathematics and its Applications 394 Kluwer, Dordrecht (1997). MR 1441079
Reference: [25] Zhao, F., Wu, X.: Periodic solutions for a class of non-autonomous second order systems.J. Math. Anal. Appl. 296 (2004), 422-434. MR 2075174, 10.1016/j.jmaa.2004.01.041
Reference: [26] Zhao, F., Wu, X.: Existence and multiplicity of periodic solution for non-autonomous second-order systems with linear nonlinearity.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 60 (2005), 325-335. Zbl 1087.34022, MR 2101882
Reference: [27] Zhou, J. W., Li, Y. K.: Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 2856-2865. Zbl 1175.34035, MR 2532812, 10.1016/j.na.2009.01.140
Reference: [28] Zhou, J. W., Li, Y. K.: Existence of solutions for a class of second-order Hamiltonian systems with impulsive effects.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 1594-1603. Zbl 1193.34057, MR 2577560, 10.1016/j.na.2009.08.041
.

Files

Files Size Format View
AplMat_59-2014-5_4.pdf 336.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo