Previous |  Up |  Next

Article

Keywords:
complete convergence; $\varphi $-mixing sequence; Marcinkiewicz-Zygmund type strong law of large numbers
Summary:
In this paper, we establish the complete convergence and complete moment convergence of weighted sums for arrays of rowwise $\varphi $-mixing random variables, and the Baum-Katz-type result for arrays of rowwise $\varphi $-mixing random variables. As an application, the Marcinkiewicz-Zygmund type strong law of large numbers for sequences of $\varphi $-mixing random variables is obtained. We extend and complement the corresponding results of X. J. Wang, S. H. Hu (2012).
References:
[1] Baek, J.-I., Choi, I.-B., Niu, S.-L.: On the complete convergence of weighted sums for arrays of negatively associated variables. J. Korean Stat. Soc. 37 73-80 (2008). DOI 10.1016/j.jkss.2007.08.001 | MR 2409372 | Zbl 1298.60039
[2] Baek, J.-I., Park, S.-T.: Convergence of weighted sums for arrays of negatively dependent random variables and its applications. RETRACTED. J. Theor. Probab. 23 362-377 (2010), retraction ibid. 26 899-900 (2013). DOI 10.1007/s10959-008-0198-y | MR 2644864
[3] Baum, L. E., Katz, M.: Convergence rates in the law of large numbers. Trans. Am. Math. Soc. 120 108-123 (1965). DOI 10.1090/S0002-9947-1965-0198524-1 | MR 0198524 | Zbl 0142.14802
[4] Chen, P., Hu, T.-C., Liu, X., Volodin, A.: On complete convergence for arrays of row-wise negatively associated random variables. Theory Probab. Appl. 52 323-328 (2008), and Teor. Veroyatn. Primen. 52 393-397 (2007). DOI 10.1137/S0040585X97983079 | MR 2742512
[5] Chen, P., Hu, T.-C., Volodin, A.: Limiting behaviour of moving average processes under negative association assumption. Theory Probab. Math. Stat. 77 165-176 (2008), and Teor. Jmovirn. Mat. Stat. 77 149-160 (2007). DOI 10.1090/S0094-9000-09-00755-8 | MR 2432780 | Zbl 1199.60074
[6] Dobrushin, R. L.: Central limit theorem for non-stationary Markov chains. I, II. Teor. Veroyatn. Primen. 1 72-89 (1956), Berichtigung. Ibid. 3 477 (1958). MR 0086436
[7] Erdős, P.: On a theorem of Hsu and Robbins. Ann. Math. Stat. 20 286-291 (1949). DOI 10.1214/aoms/1177730037 | MR 0030714 | Zbl 0033.29001
[8] Guo, M. L.: Complete moment convergence of weighted sums for arrays of rowwise $\varphi$-mixing random variables. Int. J. Math. Math. Sci. 2012 Article ID 730962, 13 pp (2012). MR 2974698 | Zbl 1253.60050
[9] Hsu, P. L., Robbins, H.: Complete convergence and the law of large numbers. Proc. Natl. Acad. Sci. USA 33 25-31 (1947). DOI 10.1073/pnas.33.2.25 | MR 0019852 | Zbl 0030.20101
[10] Hu, T.-C., Cabrera, M. Ordóñez, Sung, S. H., Volodin, A.: Complete convergence for arrays of rowwise independent random variables. Commun. Korean Math. Soc. 18 375-383 (2003). DOI 10.4134/CKMS.2003.18.2.375 | MR 1986755
[11] Jun, A., Demei, Y.: Complete convergence of weighted sums for $\rho *$-mixing sequence of random variables. Stat. Probab. Lett. 78 1466-1472 (2008). DOI 10.1016/j.spl.2007.12.020 | MR 2453801 | Zbl 1155.60316
[12] Kruglov, V. M., Volodin, A. I., Hu, T.-C.: On complete convergence for arrays. Stat. Probab. Lett. 76 1631-1640 (2006). DOI 10.1016/j.spl.2006.04.006 | MR 2248851 | Zbl 1100.60014
[13] Kuczmaszewska, A.: On complete convergence for arrays of rowwise dependent random variables. Stat. Probab. Lett. 77 1050-1060 (2007). DOI 10.1016/j.spl.2006.12.007 | MR 2395060 | Zbl 1120.60025
[14] Kuczmaszewska, A.: On complete convergence for arrays of rowwise negatively associated random variables. Stat. Probab. Lett. 79 116-124 (2009). DOI 10.1016/j.spl.2008.07.030 | MR 2484124 | Zbl 1154.60319
[15] Peligrad, M.: Convergence rates of the strong law for stationary mixing sequences. Z. Wahrscheinlichkeitstheor. Verw. Geb. 70 307-314 (1985). DOI 10.1007/BF02451434 | MR 0799152 | Zbl 0554.60038
[16] Peligrad, M., Gut, A.: Almost-sure results for a class of dependent random variables. J. Theor. Probab. 12 87-104 (1999). MR 1674972 | Zbl 0928.60025
[17] Qiu, D. H., Hu, T.-C., Cabrera, M. O., Volodin, A.: Complete convergence for weighted sums of arrays of Banach-space-valued random elements. Lith. Math. J. 52 316-325 (2012). DOI 10.1007/s10986-012-9175-3 | MR 3020945
[18] Shao, Q. M.: A moment inequality and its applications. Acta Math. Sin. 31 736-747 Chinese (1988). MR 1000416 | Zbl 0698.60025
[19] Shen, A. T., Wang, X. H., Ling, J. M.: On complete convergence for non-stationary $\varphi$-mixing random variables. Commun. Stat. Theory Methods DOI:10.1080/03610926. 2012.725501.
[20] Stoica, G.: Baum-Katz-Nagaev type results for martingales. J. Math. Anal. Appl. 336 1489-1492 (2007). DOI 10.1016/j.jmaa.2007.03.012 | MR 2353031 | Zbl 1130.60020
[21] Stoica, G.: A note on the rate of convergence in the strong law of large numbers for martingales. J. Math. Anal. Appl. 381 910-913 (2011). DOI 10.1016/j.jmaa.2011.04.008 | MR 2802125 | Zbl 1237.60025
[22] Sung, S. H.: Moment inequalities and complete moment convergence. J. Inequal. Appl. 2009 Article ID 271265, 14 pp (2009). MR 2551753 | Zbl 1180.60019
[23] Sung, S. H.: Complete convergence for weighted sums of $\rho^{\ast} $-mixing random variables. Discrete Dyn. Nat. Soc. 2010 Article ID 630608, 13 pp (2010). MR 2611046 | Zbl 1193.60045
[24] Sung, S. H.: On complete convergence for weighted sums of arrays of dependent random variables. Abstr. Appl. Anal. 2011 Article ID 630583, 11 pp (2011). MR 2861513 | Zbl 1231.60025
[25] Sung, S. H., Volodin, A. I., Hu, T.-C.: More on complete convergence for arrays. Stat. Probab. Lett. 71 303-311 (2005). DOI 10.1016/j.spl.2004.11.006 | MR 2145498 | Zbl 1087.60030
[26] Wang, X. J., Hu, S. H.: Some Baum-Katz type results for ${\varphi}$-mixing random variables with different distributions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 106 321-331 (2012). DOI 10.1007/s13398-011-0056-0 | MR 2978917 | Zbl 1266.60056
[27] Wang, X. J., Hu, S. H., Yang, W. Z., Shen, Y.: On complete convergence for weighted sums of $\varphi $-mixing random variables. J. Inequal. Appl. 2010 Article ID 372390, 13 pp (2010). MR 2671020 | Zbl 1208.60031
[28] Wang, X. J., Hu, S. H., Yang, W. Z., Wang, X. H.: Convergence rates in the strong law of large numbers for martingale difference sequences. Abstr. Appl. Anal. 2012 Article ID 572493, 13 pp (2012). MR 2955034 | Zbl 1253.60045
[29] Wang, X. J., Hu, S. H., Yang, W. Z., Wang, X. H.: On complete convergence of weighted sums for arrays of rowwise asymptotically almost negatively associated random variables. Abstr. Appl. Anal. 2012 Article ID 315138, 15 pp (2012). MR 2947673 | Zbl 1253.60044
[30] Wu, Q. Y.: Probability Limit Theory for Mixed Sequence. China Science Press, Beijing (2006), Chinese.
[31] Wu, Q. Y.: A complete convergence theorem for weighted sums of arrays of rowwise negatively dependent random variables. J. Inequal. Appl. 2012 Article ID 50, 10 pp. (electronic only) (2012). MR 2928247 | Zbl 1293.62053
[32] Zhang, L. X., Wen, J. W.: The strong law of large numbers for $B$-valued random fields. Chin. Ann. Math., Ser. A 22 205-216 Chinese (2001). MR 1837525 | Zbl 0983.60016
[33] Zhou, X. C., Lin, J. G.: On complete convergence for arrays of rowwise $\rho $-mixing random variables and its applications. J. Inequal. Appl. 2010 Article ID 769201, 12 pp (2010). MR 2738676 | Zbl 1208.60032
Partner of
EuDML logo