Previous |  Up |  Next

Article

Title: A De Bruijn-Erdős theorem for $1$-$2$ metric spaces (English)
Author: Chvátal, Vašek
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 1
Year: 2014
Pages: 45-51
Summary lang: English
.
Category: math
.
Summary: A special case of a combinatorial theorem of De Bruijn and Erdős asserts that every noncollinear set of $n$ points in the plane determines at least $n$ distinct lines. Chen and Chvátal suggested a possible generalization of this assertion in metric spaces with appropriately defined lines. We prove this generalization in all metric spaces where each nonzero distance equals $1$ or $2$. (English)
Keyword: line in metric space
Keyword: De Bruijn-Erd\H os theorem
MSC: 05D99
MSC: 51G99
idZBL: Zbl 06391474
idMR: MR3247442
DOI: 10.1007/s10587-014-0081-1
.
Date available: 2014-09-29T09:32:03Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143947
.
Reference: [1] Aboulker, P., Bondy, A., Chen, X., Chiniforooshan, E., Miao, P.: Number of lines in hypergraphs.Discrete Appl. Math. 171 (2014), 137-140. Zbl 1288.05185, MR 3190588, 10.1016/j.dam.2014.02.008
Reference: [2] Chen, X., Chvátal, V.: Problems related to a De Bruijn-Erdős theorem.Discrete Appl. Math. 156 (2008), 2101-2108. Zbl 1157.05019, MR 2437004, 10.1016/j.dam.2007.05.036
Reference: [3] Chiniforooshan, E., Chvátal, V.: A De Bruijn-Erdős theorem and metric spaces.Discrete Math. Theor. Comput. Sci. 13 (2011), 67-74. Zbl 1283.52022, MR 2812604
Reference: [4] Bruijn, N. G. De, Erdős, P.: On a combinatorial problem.Proc. Akad. Wet. Amsterdam 51 (1948), 1277-1279. Zbl 0032.24405, MR 0028289
Reference: [5] Erdős, P.: Three point collinearity, Problem 4065.Am. Math. Mon. 50 (1943), 65; Solutions in vol. 51 (1944), 169-171. MR 1525919
.

Files

Files Size Format View
CzechMathJ_64-2014-1_5.pdf 221.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo