Previous |  Up |  Next

Article

Keywords:
Dirichlet character of polynomials; two-term exponential sums; hybrid mean value; asymptotic formula
Summary:
Let $q \ge 3$ be a positive integer. For any integers $m$ and $n$, the two-term exponential sum $C(m,n,k;q)$ is defined by $C(m,n,k;q) = \sum _{a=1}^q e ({(ma^k +na)}/{q})$, where $e(y)={\rm e}^{2\pi {\rm i} y}$. In this paper, we use the properties of Gauss sums and the estimate for Dirichlet character of polynomials to study the mean value problem involving two-term exponential sums and Dirichlet character of polynomials, and give an interesting asymptotic formula for it.
References:
[1] Apostol, T. M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer New York (1976). MR 0434929
[2] Burgess, D. A.: On Dirichlet characters of polynomials. Proc. Lond. Math. Soc., III. Ser. 13 (1963), 537-548. DOI 10.1112/plms/s3-13.1.537 | MR 0148627 | Zbl 0118.04704
[3] Cochrane, T., Coffelt, J., Pinner, C.: A further refinement of Mordell's bound on exponential sums. Acta Arith. 116 (2005), 35-41. DOI 10.4064/aa116-1-4 | MR 2114903 | Zbl 1082.11050
[4] Cochrane, T., Pinner, C.: Using Stepanov's method for exponential sums involving rational functions. J. Number Theory 116 (2006), 270-292. DOI 10.1016/j.jnt.2005.04.001 | MR 2195926 | Zbl 1093.11058
[5] Cochrane, T., Zheng, Z.: Bounds for certain exponential sums. Asian J. Math. 4 (2000), 757-774. DOI 10.4310/AJM.2000.v4.n4.a3 | MR 1870657 | Zbl 1030.11040
[6] Cochrane, T., Zheng, Z.: Pure and mixed exponential sums. Acta Arith. 91 (1999), 249-278. MR 1735676 | Zbl 0937.11031
[7] Cochrane, T., Zheng, Z.: Upper bounds on a two-term exponential sum. Sci. China, Ser. A 44 (2001), 1003-1015. DOI 10.1007/BF02878976 | MR 1857555 | Zbl 1012.11078
[8] Granville, A., Soundararajan, K.: Large character sums: pretentious characters and the Pólya-Vinogradov theorem. J. Am. Math. Soc. 20 (2007), 357-384. DOI 10.1090/S0894-0347-06-00536-4 | MR 2276774 | Zbl 1210.11090
[9] Hua, L.-K.: Introduction to Number Theory. Unaltered reprinting of the 1957 edition. Science Press Peking (1964), Chinese. MR 0094310
[10] Weil, A.: On some exponential sums. Proc. Natl. Acad. Sci. USA 34 (1948), 204-207. DOI 10.1073/pnas.34.5.204 | MR 0027006 | Zbl 0032.26102
[11] Zhang, W., Yao, W.: A note on the Dirichlet characters of polynomials. Acta Arith. 115 (2004), 225-229. DOI 10.4064/aa115-3-3 | MR 2100501 | Zbl 1076.11048
[12] Zhang, W., Yi, Y.: On Dirichlet characters of polynomials. Bull. Lond. Math. Soc. 34 (2002), 469-473. DOI 10.1112/S0024609302001030 | MR 1897426 | Zbl 1038.11052
Partner of
EuDML logo