Previous |  Up |  Next

Article

Keywords:
compact congruence; congruence-distributive variety
Summary:
We say that a variety ${\mathcal V}$ of algebras has the Compact Intersection Property (CIP), if the family of compact congruences of every $A\in {\mathcal V}$ is closed under intersection. We investigate the congruence lattices of algebras in locally finite, congruence-distributive CIP varieties and obtain a complete characterization for several types of such varieties. It turns out that our description only depends on subdirectly irreducible algebras in ${\mathcal V}$ and embeddings between them. We believe that the strategy used here can be further developed and used to describe the congruence lattices for any (locally finite) congruence-distributive CIP variety.
References:
[1] Agliano, P., Baker, K. A.: Congruence intersection properties for varieties of algebras. J. Aust. Math. Soc., Ser. A 67 (1999), 104-121. DOI 10.1017/S1446788700000896 | MR 1699158 | Zbl 0951.08003
[2] Baker, K. A.: Primitive satisfaction and equational problems for lattices and other algebras. Trans. Am. Math. Soc. 190 (1974), 125-150. DOI 10.1090/S0002-9947-1974-0349532-4 | MR 0349532 | Zbl 0291.08001
[3] Blok, W. J., Pigozzi, D.: On the structure of varieties with equationally definable principal congruences. I. Algebra Univers. 15 (1982), 195-227. DOI 10.1007/BF02483723 | MR 0686803 | Zbl 0512.08002
[4] Gillibert, P., Ploščica, M.: Congruence FD-maximal varieties of algebras. Int. J. Algebra Comput. 22 1250053, 14 pages (2012). DOI 10.1142/S0218196712500531 | MR 2974107 | Zbl 1261.06013
[5] Grätzer, G.: General Lattice Theory. (With appendices with B. A. Davey, R. Freese, B. Ganter, et al.) Paperback reprint of the 1998 2nd edition Birkhäuser, Basel (2003). MR 1670580 | Zbl 1152.06300
[6] Katriňák, T.: A new proof of the construction theorem for Stone algebras. Proc. Am. Math. Soc. 40 (1973), 75-78. DOI 10.2307/2038636 | MR 0316335 | Zbl 0258.06006
[7] Katriňák, T., Mitschke, A.: Stonesche Verbände der Ordnung $n$ und Postalgebren. Math. Ann. 199 (1972), 13-30 German. DOI 10.1007/BF01419572 | MR 0319838 | Zbl 0253.06009
[8] Lee, K. B.: Equational classes of distributive pseudo-complemented lattices. Can. J. Math. 22 (1970), 881-891. DOI 10.4153/CJM-1970-101-4 | MR 0265240 | Zbl 0244.06009
[9] Ploščica, M.: Separation in distributive congruence lattices. Algebra Univers. 49 (2003), 1-12. MR 1978609 | Zbl 1090.08003
[10] Ploščica, M.: Finite congruence lattices in congruence distributive varieties. I. Chajda, et al. Proceedings of the 64th workshop on general algebra ``64. Arbeitstagung Allgemeine Algebra'', Olomouc, Czech Republic, May 30--June 2, 2002 and of the 65th workshop on general algebra ``65. Arbeitstagung Allgemeine Algebra'', Potsdam, Germany, March 21-23, 2003 Verlag Johannes Heyn, Klagenfurt. Contrib. Gen. Algebra {\it 14} 119-125 (2004). MR 2059570 | Zbl 1047.08005
[11] Ploščica, M.: Local separation in distributive semilattices. Algebra Univers. 54 (2005), 323-335. DOI 10.1007/s00012-005-1949-6 | MR 2219414 | Zbl 1086.06003
[12] Ploščica, M., Tůma, J., Wehrung, F.: Congruence lattices of free lattices in non-distributive varieties. Colloq. Math. 76 (1998), 269-278. MR 1618712 | Zbl 0904.06005
[13] Růžička, P.: Lattices of two-sided ideals of locally matricial algebras and the $\Gamma$-invariant problem. Isr. J. Math. 142 (2004), 1-28. DOI 10.1007/BF02771525 | MR 2085708 | Zbl 1057.06004
[14] Schmidt, E. T.: The ideal lattice of a distributive lattice with 0 is the congruence lattice of a lattice. Acta Sci. Math. (Szeged) 43 (1981), 153-168. MR 0621367 | Zbl 0463.06007
[15] Wehrung, F.: A uniform refinement property for congruence lattices. Proc. Am. Math. Soc. 127 (1999), 363-370. DOI 10.1090/S0002-9939-99-04558-X | MR 1468207 | Zbl 0902.06006
Partner of
EuDML logo