Previous |  Up |  Next

Article

Title: Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition II (English)
Author: Lee, Hyunjin
Author: Kim, Seonhui
Author: Suh, Young Jin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 1
Year: 2014
Pages: 133-148
Summary lang: English
.
Category: math
.
Summary: Lee, Kim and Suh (2012) gave a characterization for real hypersurfaces $M$ of Type ${\rm (A)}$ in complex two plane Grassmannians $G_2({\mathbb C}^{m+2})$ with a commuting condition between the shape operator $A$ and the structure tensors $\phi $ and $\phi _{1}$ for $M$ in $G_2({\mathbb C}^{m+2})$. Motivated by this geometrical notion, in this paper we consider a new commuting condition in relation to the shape operator $A$ and a new operator $\phi \phi _{1}$ induced by two structure tensors $\phi $ and $\phi _{1}$. That is, this commuting shape operator is given by $\phi \phi _{1} A = A \phi \phi _{1}$. Using this condition, we prove that $M$ is locally congruent to a tube of radius $r$ over a totally geodesic $G_2({\mathbb C}^{m+1})$ in $G_2({\mathbb C}^{m+2})$. (English)
Keyword: complex two-plane Grassmannians
Keyword: Hopf hypersurface
Keyword: $\mathfrak D^{\bot }$-invariant hypersurface
Keyword: commuting shape operator
Keyword: Reeb vector field
MSC: 32V40
MSC: 53C15
MSC: 53C40
idZBL: Zbl 06391482
idMR: MR3247450
DOI: 10.1007/s10587-014-0089-6
.
Date available: 2014-09-29T09:43:52Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143955
.
Related article: http://dml.cz/handle/10338.dmlcz/143029
.
Reference: [1] Alekseevskij, D. V.: Compact quaternion spaces.Funkts. Anal. Prilozh. 2 (1968), 11-20 Russian. Zbl 0175.19001, MR 0231314
Reference: [2] Berndt, J.: Riemannian geometry of complex two-plane Grassmannians.Rend. Semin. Mat., Torino 55 (1997), 19-83. Zbl 0909.53038, MR 1626089
Reference: [3] Berndt, J., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians.Monatsh. Math. 127 (1999), 1-14. Zbl 0920.53016, MR 1666307, 10.1007/s006050050018
Reference: [4] Berndt, J., Suh, Y. J.: Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians.Monatsh. Math. 137 (2002), 87-98. Zbl 1015.53034, MR 1937621, 10.1007/s00605-001-0494-4
Reference: [5] Jeong, I., Lee, H. J., Suh, Y. J.: Anti-commuting real hypersurfaces in complex two-plane Grassmannians.Bull. Aust. Math. Soc. 78 (2008), 199-210. Zbl 1154.53031, MR 2466859, 10.1017/S0004972708000609
Reference: [6] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I.Interscience Publishers, a division of John Wiley and Sons New York (1963). Zbl 0119.37502, MR 0152974
Reference: [7] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry Vol. II.Interscience Tracts in Pure and Applied Mathematics No. 15, Vol. II Interscience Publishers, a division of John Wiley and Sons, New York (1969). Zbl 0175.48504, MR 0238225
Reference: [8] Lee, H., Kim, S., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition.Czech. Math. J. 62 (2012), 849-861. Zbl 1260.53097, MR 2984638, 10.1007/s10587-012-0049-y
Reference: [9] Lee, H., Suh, Y. J.: Real hypersurfaces of type $B$ in complex two-plane Grassmannians related to the Reeb vector.Bull. Korean Math. Soc. 47 (2010), 551-561. Zbl 1206.53064, MR 2666376, 10.4134/BKMS.2010.47.3.551
Reference: [10] Pérez, J. D., Jeong, I., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians with commuting normal Jacobi operator.Acta Math. Hung. 117 (2007), 201-217. Zbl 1220.53070, MR 2361601, 10.1007/s10474-007-6091-9
Reference: [11] Pérez, J. D., Suh, Y. J.: The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians.J. Korean Math. Soc. 44 (2007), 211-235. Zbl 1156.53034, MR 2283469, 10.4134/JKMS.2007.44.1.211
Reference: [12] Pérez, J. D., Suh, Y. J., Watanabe, Y.: Generalized Einstein real hypersurfaces in complex two-plane Grassmannians.J. Geom. Phys. 60 (2010), 1806-1818. Zbl 1197.53071, MR 2679423, 10.1016/j.geomphys.2010.06.017
Reference: [13] Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians with commuting shape operator.Bull. Aust. Math. Soc. 68 (2003), 379-393. Zbl 1058.53046, MR 2027682, 10.1017/S0004972700037795
Reference: [14] Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature.J. Math. Pures Appl. 100 (2013), 16-33. Zbl 1279.53052, MR 3057300, 10.1016/j.matpur.2012.10.010
Reference: [15] Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor.Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), 1309-1324. Zbl 1293.53071, MR 3002598
Reference: [16] Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians with $\xi$-invariant Ricci tensor.J. Geom. Phys. 61 (2011), 808-814. Zbl 1209.53046, MR 2765405, 10.1016/j.geomphys.2010.12.010
Reference: [17] Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians with Reeb parallel Ricci tensor.J. Geom. Phys. 64 (2013), 1-11. Zbl 1259.53052, MR 3004010, 10.1016/j.geomphys.2012.10.005
Reference: [18] Suh, Y. J.: Real hypersurfaces of Type $B$ in complex two-plane Grassmannians.Monatsh. Math. 147 (2006), 337-355. Zbl 1094.53050, MR 2215841, 10.1007/s00605-005-0329-9
.

Files

Files Size Format View
CzechMathJ_64-2014-1_13.pdf 288.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo