Previous |  Up |  Next

Article

Title: Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent (English)
Author: Cheung, Ka Luen
Author: Ho, Kwok-Pun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 1
Year: 2014
Pages: 159-171
Summary lang: English
.
Category: math
.
Summary: The family of block spaces with variable exponents is introduced. We obtain some fundamental properties of the family of block spaces with variable exponents. They are Banach lattices and they are generalizations of the Lebesgue spaces with variable exponents. Moreover, the block space with variable exponents is a pre-dual of the corresponding Morrey space with variable exponents. The main result of this paper is on the boundedness of the Hardy-Littlewood maximal operator on the block space with variable exponents. We find that the Hardy-Littlewood maximal operator is bounded on the block space with variable exponents whenever the Hardy-Littlewood maximal operator is bounded on the corresponding Lebesgue space with variable exponents. (English)
Keyword: block space
Keyword: variable exponent analysis
Keyword: Hardy-Littlewood maximal operator
MSC: 42B25
MSC: 46E30
idZBL: Zbl 06391484
idMR: MR3247452
DOI: 10.1007/s10587-014-0091-z
.
Date available: 2014-09-29T09:49:18Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143957
.
Reference: [1] Bennett, C., Sharpley, R.: Interpolation of Operators.Pure and Applied Mathematics vol. 129 Academic Press, Boston (1988). Zbl 0647.46057, MR 0928802
Reference: [2] Blasco, O., Ruiz, A., Vega, L.: Non interpolation in Morrey-Campanato and block spaces.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 28 (1999), 31-40. Zbl 0955.46013, MR 1679077
Reference: [3] Chiarenza, F., Frasca, M.: Morrey spaces and Hardy-Littlewood maximal function.Rend. Mat. Appl., VII. Ser. 7 (1987), 273-279. Zbl 0717.42023, MR 0985999
Reference: [4] Cruz-Uribe, D., Diening, L., Fiorenza, A.: A new proof of the boundedness of maximal operators on variable Lebesgue spaces.Boll. Unione Mat. Ital. 2 (2009), 151-173. Zbl 1207.42011, MR 2493649
Reference: [5] Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C.: The boundedness of classical operators on variable $L^{p}$ spaces.Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. Zbl 1100.42012, MR 2210118
Reference: [6] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.: The maximal function on variable $L^{p}$ spaces.Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. MR 1976842
Reference: [7] Diening, L.: Maximal functions on Musielak-Orlicz spaces and generalized Lebesgue spaces.Bull. Sci. Math. 129 (2005), 657-700. Zbl 1096.46013, MR 2166733, 10.1016/j.bulsci.2003.10.003
Reference: [8] Diening, L.: Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$.Math. Inequal. Appl. 7 (2004), 245-253. MR 2057643
Reference: [9] Diening, L., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T.: Maximal functions in variable exponent spaces: limiting cases of the exponent.Ann. Acad. Sci. Fenn., Math. 34 (2009), 503-522. MR 2553809
Reference: [10] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017 Springer, Berlin (2011). Zbl 1222.46002, MR 2790542
Reference: [11] Hästö, P. A.: Local-to-global results in variable exponent spaces.Math. Res. Lett. 16 (2009), 263-278. Zbl 1184.46033, MR 2496743, 10.4310/MRL.2009.v16.n2.a5
Reference: [12] Ho, K.-P.: Atomic decompositions of Hardy-Morrey spaces with variable exponents.Ann. Acad. Sci. Fenn., Math (to appear).
Reference: [13] Ho, K.-P.: Atomic decompositions of weighted Hardy-Morrey spaces.Hokkaido Math. J. 42 (2013), 131-157. Zbl 1269.42010, MR 3076303, 10.14492/hokmj/1362406643
Reference: [14] Ho, K.-P.: Characterizations of $BMO$ by $A_{p}$ weights and $p$-convexity.Hiroshima Math. J. 41 (2011), 153-165. Zbl 1227.42024, MR 2849152, 10.32917/hmj/1314204559
Reference: [15] Ho, K.-P.: Generalized Boyd's indices and applications.Analysis (Munich) 32 (2012), 97-106. Zbl 1287.42014, MR 3043715
Reference: [16] Ho, K.-P.: Littlewood-Paley spaces.Math. Scand. 108 (2011), 77-102. Zbl 1263.42021, MR 2780808, 10.7146/math.scand.a-15161
Reference: [17] Ho, K.-P.: Vector-valued singular integral operators on Morrey type spaces and variable Triebel-Lizorkin-Morrey spaces.Ann. Acad. Sci. Fenn., Math. 37 (2012), 375-406. Zbl 1261.42016, MR 2987074, 10.5186/aasfm.2012.3746
Reference: [18] Kokilashvili, V., Meskhi, A.: Boundedness of maximal and singular operators in Morrey spaces with variable exponent.Armen. J. Math. 1 (2008), 18-28. Zbl 1281.42012, MR 2436241
Reference: [19] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czech. Math. J. 41 (1991), 592-618. MR 1134951
Reference: [20] Lerner, A. K.: On some questions related to the maximal operator on variable $L_{p}$ spaces.Trans. Am. Math. Soc. 362 (2010), 4229-4242. Zbl 1208.42008, MR 2608404, 10.1090/S0002-9947-10-05066-X
Reference: [21] Lerner, A. K.: Some remarks on the Hardy-Littlewood maximal function on variable $L_{p}$ spaces.Math. Z. 251 (2005), 509-521. Zbl 1092.42009, MR 2190341, 10.1007/s00209-005-0818-5
Reference: [22] Meyer, Y., Taibleson, M. H., Weiss, G.: Some functional analytic properties of the space $B_{q}$ generated by blocks.Indiana Univ. Math. J. 34 (1985), 493-515. MR 0794574, 10.1512/iumj.1985.34.34028
Reference: [23] Nekvinda, A.: A note on maximal operator on $l^{\{ p_{n}\} }$ and $L^{p(x)}({\Bbb R})$.J. Funct. Spaces Appl. 5 (2007), 49-88. MR 2296013, 10.1155/2007/294367
Reference: [24] Nekvinda, A.: Hardy-Littlewood maximal operator on $L^{p(x)}({\Bbb R}^{n})$.Math. Inequal. Appl. 7 (2004), 255-265. MR 2057644
Reference: [25] Nekvinda, A.: Maximal operator on variable Lebesgue spaces for almost monotone radial exponent.J. Math. Anal. Appl. 337 (2008), 1345-1365. Zbl 1260.42010, MR 2386383, 10.1016/j.jmaa.2007.04.047
Reference: [26] Soria, F.: Characterizations of classes of functions generated by blocks and associated Hardy spaces.Indiana Univ. Math. J. 34 (1985), 463-492. Zbl 0573.42015, MR 0794573, 10.1512/iumj.1985.34.34027
.

Files

Files Size Format View
CzechMathJ_64-2014-1_15.pdf 277.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo