Previous |  Up |  Next

Article

Title: Fixed point results on a metric space endowed with a finite number of graphs and applications (English)
Author: Argoubi, Hajer
Author: Samet, Bessem
Author: Turinici, Mihai
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 1
Year: 2014
Pages: 241-250
Summary lang: English
.
Category: math
.
Summary: In this paper, we consider self-mappings defined on a metric space endowed with a finite number of graphs. Under certain conditions imposed on the graphs, we establish a new fixed point theorem for such mappings. The obtained result extends, generalizes and improves many existing contributions in the literature including standard fixed point theorems, fixed point theorems on a metric space endowed with a partial order and fixed point theorems for cyclic mappings. (English)
Keyword: fixed point
Keyword: graph
Keyword: metric space
Keyword: order
Keyword: cyclic map
MSC: 05C40
MSC: 06A06
MSC: 47H10
idZBL: Zbl 06391490
idMR: MR3247458
DOI: 10.1007/s10587-014-0097-6
.
Date available: 2014-09-29T10:01:43Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143963
.
Reference: [1] Agarwal, R. P., El-Gebeily, M. A., O'Regan, D.: Generalized contractions in partially ordered metric spaces.Appl. Anal. 87 (2008), 109-116. Zbl 1140.47042, MR 2381749, 10.1080/00036810701556151
Reference: [2] Aleomraninejad, S. M. A., Rezapour, S., Shahzad, N.: Some fixed point results on a metric space with a graph.Topology Appl. 159 (2012), 659-663. Zbl 1237.54042, MR 2868864
Reference: [3] Altun, I., Simsek, H.: Some fixed point theorems on ordered metric spaces and application.Fixed Point Theory Appl. (2010), Article ID 621469, 17 pages. Zbl 1197.54053, MR 2591832
Reference: [4] Beg, I., Butt, A. R., Radojević, S.: The contraction principle for set valued mappings on a metric space with a graph.Comput. Math. Appl. 60 (2010), 1214-1219. Zbl 1201.54029, MR 2672921, 10.1016/j.camwa.2010.06.003
Reference: [5] Bhaskar, T. G., Lakshmikantham, V.: Fixed point theorems in partially ordered metric spaces and applications.Nonlinear Anal. 65 (2006), 1379-1393. Zbl 1106.47047, MR 2245511
Reference: [6] Boyd, D. W., Wong, J. S. W.: On nonlinear contractions.Proc. Am. Math. Soc. 20 (1969), 458-464. Zbl 0175.44903, MR 0239559, 10.1090/S0002-9939-1969-0239559-9
Reference: [7] Chatterjea, S. K.: Fixed-point theorems.C. R. Acad. Bulg. Sci. 25 (1972), 727-730. Zbl 0274.54033, MR 0324493
Reference: [8] 'Cirić, Lj. B.: Generalized contractions and fixed-point theorems.Publ. Inst. Math., Nouv. Sér. 12 (1971), 19-26. Zbl 0234.54029, MR 0309092
Reference: [9] Ćirić, Lj. B., Cakić, N., Rajović, M., Ume, J. S.: Monotone generalized nonlinear contractions in partially ordered metric spaces.Fixed Point Theory Appl. (2008), Article ID 131294, 11 pages. Zbl 1158.54019, MR 2481377
Reference: [10] Espínola, R., Kirk, W. A.: Fixed point theorems in $\mathbb{R}$-trees with applications to graph theory.Topology Appl. 153 (2006), 1046-1055. Zbl 1095.54012, MR 2203018, 10.1016/j.topol.2005.03.001
Reference: [11] Hardy, G. E., Rogers, T. D.: A generalization of a fixed point theorem of Reich.Can. Math. Bull. 16 (1973), 201-206. Zbl 0266.54015, MR 0324495, 10.4153/CMB-1973-036-0
Reference: [12] Harjani, J., Sadarangani, K.: Fixed point theorems for weakly contractive mappings in partially ordered sets.Nonlinear Anal. 71 (2009), 3403-3410. Zbl 1221.54058, MR 2532760
Reference: [13] Jachymski, J.: The contraction principle for mappings on a metric space with a graph.Proc. Am. Math. Soc. 136 (2008), 1359-1373. Zbl 1139.47040, MR 2367109, 10.1090/S0002-9939-07-09110-1
Reference: [14] Kannan, R.: On certain sets and fixed point theorems.Rev. Roum. Math. Pures Appl. 14 (1969), 51-54. Zbl 0188.55403, MR 0243507
Reference: [15] Kirk, W. A., Srinivasan, P. S., Veeramani, P.: Fixed points for mappings satisfying cyclical contractive conditions.Fixed Point Theory 4 (2003), 79-89. Zbl 1052.54032, MR 2031823
Reference: [16] Nieto, J. J., Rodríguez-López, R.: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations.Order 22 (2005), 223-239. Zbl 1095.47013, MR 2212687, 10.1007/s11083-005-9018-5
Reference: [17] Nieto, J. J., Rodríguez-López, R.: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations.Acta Math. Sin., Engl. Ser. 23 (2007), 2205-2212. Zbl 1140.47045, MR 2357454, 10.1007/s10114-005-0769-0
Reference: [18] Petruşel, A., Rus, I. A.: Fixed point theorems in ordered $L$-spaces.Proc. Am. Math. Soc. 134 (2006), 411-418. Zbl 1086.47026, MR 2176009, 10.1090/S0002-9939-05-07982-7
Reference: [19] Ran, A. C. M., Reurings, M. C. B.: A fixed point theorem in partially ordered sets and some applications to matrix equations.Proc. Am. Math. Soc. 132 (2004), 1435-1443. Zbl 1060.47056, MR 2053350, 10.1090/S0002-9939-03-07220-4
Reference: [20] Samet, B.: Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces.Nonlinear Anal. 72 (2010), 4508-4517. Zbl 1264.54068, MR 2639199, 10.1016/j.na.2010.02.026
Reference: [21] Samet, B., Vetro, C.: Coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces.Nonlinear Anal. 74 (2011), 4260-4268. Zbl 1216.54021, MR 2803028
Reference: [22] Suzuki, T.: A generalized Banach contraction principle that characterizes metric completeness.Proc. Am. Math. Soc. 136 (2008), 1861-1869. Zbl 1145.54026, MR 2373618, 10.1090/S0002-9939-07-09055-7
Reference: [23] Turinici, M.: Abstract comparison principles and multivariable Gronwall-Bellman inequalities.J. Math. Anal. Appl. 117 (1986), 100-127. Zbl 0613.47037, MR 0843008, 10.1016/0022-247X(86)90251-9
.

Files

Files Size Format View
CzechMathJ_64-2014-1_21.pdf 247.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo