Previous |  Up |  Next

Article

Title: The primitive Boolean matrices with the second largest scrambling index by Boolean rank (English)
Author: Shao, Yanling
Author: Gao, Yubin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 1
Year: 2014
Pages: 269-283
Summary lang: English
.
Category: math
.
Summary: The scrambling index of an $n\times n$ primitive Boolean matrix $A$ is the smallest positive integer $k$ such that $A^k(A^{\rm T})^k=J$, where $A^{\rm T}$ denotes the transpose of $A$ and $J$ denotes the $n\times n$ all ones matrix. For an $m\times n$ Boolean matrix $M$, its Boolean rank $b(M)$ is the smallest positive integer $b$ such that $M=AB$ for some $m\times b$ Boolean matrix $A$ and $b\times n$ Boolean matrix $B$. In 2009, M. Akelbek, S. Fital, and J. Shen gave an upper bound on the scrambling index of an $n\times n$ primitive matrix $M$ in terms of its Boolean rank $b(M)$, and they also characterized all primitive matrices that achieve the upper bound. In this paper, we characterize primitive Boolean matrices that achieve the second largest scrambling index in terms of their Boolean rank. (English)
Keyword: scrambling index
Keyword: primitive matrix
Keyword: Boolean rank
MSC: 05C20
MSC: 05C50
MSC: 05C75
MSC: 15B35
idZBL: Zbl 06391492
idMR: MR3247460
DOI: 10.1007/s10587-014-0099-4
.
Date available: 2014-09-29T10:05:15Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143965
.
Reference: [1] Akelbek, M., Kirkland, S.: Coefficients of ergodicity and the scrambling index.Linear Algebra Appl. 430 (2009), 1111-1130. Zbl 1167.05030, MR 2489382
Reference: [2] Akelbek, M., Fital, S., Shen, J.: A bound on the scrambling index of a primitive matrix using Boolean rank.Linear Algebra Appl. 431 (2009), 1923-1931. Zbl 1178.15019, MR 2567802
Reference: [3] Brualdi, R. A., Ryser, H. J.: Combinatorial Matrix Theory.Encyclopedia of Mathematics and its Applications 39 Cambridge University Press, Cambridge (1991). Zbl 0746.05002, MR 1130611
Reference: [4] Liu, B. L., You, L. H., Yu, G. X.: On extremal matrices of second largest exponent by Boolean rank.Linear Algebra Appl. 422 (2007), 186-197. Zbl 1122.15002, MR 2299004
Reference: [5] Shao, Y., Gao, Y.: On the second largest scrambling index of primitive matrices.Ars Comb. 113 (2014), 457-462. MR 3186489
.

Files

Files Size Format View
CzechMathJ_64-2014-1_23.pdf 291.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo