Previous |  Up |  Next

Article

Title: Operads of decorated trees and their duals (English)
Author: Gubarev, Vsevolod Yu.
Author: Kolesnikov, Pavel S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 4
Year: 2014
Pages: 421-445
Summary lang: English
.
Category: math
.
Summary: This is an extended version of a talk presented by the second author on the Third Mile High Conference on Nonassociative Mathematics (August 2013, Denver, CO). The purpose of this paper is twofold. First, we would like to review the technique developed in a series of papers for various classes of di-algebras and show how the same ideas work for tri-algebras. Second, we present a general approach to the definition of pre- and post-algebras which turns out to be equivalent to the construction of dendriform splitting. However, our approach is more algebraic and thus provides simpler way to prove various properties of pre- and post-algebras in general. (English)
Keyword: Leibniz algebra
Keyword: dialgebra
Keyword: dendriform algebra
Keyword: pre-Lie algebra
MSC: 17A30
MSC: 17A36
MSC: 17A42
MSC: 18D50
idZBL: Zbl 06391552
idMR: MR3269006
.
Date available: 2014-10-09T09:45:15Z
Last updated: 2017-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143967
.
Reference: [1] Aguiar M.: Pre-Poisson algebras.Lett. Math. Phys. 54 (2000), 263–277. Zbl 1032.17038, MR 1846958, 10.1023/A:1010818119040
Reference: [2] Bai C., Bellier O., Guo L., Ni X.: Splitting of operations, Manin products, and Rota–Baxter operators.Int. Math. Res. Notes 3 (2013), 485–524. MR 3021790
Reference: [3] Bakalov B., D'Andrea A., Kac V.G.: Theory of finite pseudoalgebras.Adv. Math. 162 (2001), no. 1, 1–140. Zbl 1001.16021, MR 1849687, 10.1006/aima.2001.1993
Reference: [4] Bremner M.R.: On the definition of quasi-Jordan algebra.Comm. Algebra 38 (2010), 4695–4704. Zbl 1241.17001, MR 2805138, 10.1080/00927870903468375
Reference: [5] Bremner M.R., Felipe R., Sánchez-Ortega J.: Jordan triple disystems.Comput. Math. Appl. 63 (2012), 1039-1055. Zbl 1247.17004, MR 2892747, 10.1016/j.camwa.2011.12.008
Reference: [6] Bremner M.R., Madariaga S.: Dendriform analogues of Lie and Jordan triple systems.Comm. Algebra, to appear, arXiv:1305.1389 [math.RA]. MR 3210406
Reference: [7] Bremner M.R., Peresi L.A., Sánchez-Ortega J.: Malcev dialgebras.Linear Multilinear Algebra 60 (2012), 1125–1141. Zbl 1280.17030, MR 2983755, 10.1080/03081087.2011.651721
Reference: [8] Bremner M.R., Sánchez-Ortega J.: Leibniz triple systems.Commun. Contemp. Math. 16 (2014), 1350051 (19 pages); DOI: 10.1142/S021919971350051X. MR 3189605, 10.1142/S021919971350051X
Reference: [9] Chapoton F.: Un endofoncteur de la catégorie des opérades.in: Loday J.-L., Frabetti A., Chapoton F., Goichot F. (Eds), Dialgebras and related operads, Lectures Notes in Mathematics, 1763, Springer, Berlin, 2001, pp. 105–110. Zbl 0999.17004, MR 1860996, 10.1007/3-540-45328-8_4
Reference: [10] Cohn P.M.: On homomorphic images of special Jordan algebras.Canadian J. Math. 6 (1954), 253–264. Zbl 0055.02704, 10.4153/CJM-1954-026-9
Reference: [11] Dotsenko V., Khoroshkin A.: Character formulas for the operad of two compatible brackets and for the bihamiltonian operad.Funktsional. Anal. i Prilozhen. 41 (2007), no. 1, 1–17. MR 2333979, 10.1007/s10688-007-0001-3
Reference: [12] Giambruno A., Zaicev M.: On codimension growth of finitely generated associative algebras.Adv. Math. 140 (1998), no. 2, 145–155. Zbl 0920.16012, MR 1658530, 10.1006/aima.1998.1766
Reference: [13] Ginzburg V., Kapranov M.: Koszul duality for operads.Duke Math. J. 76 (1994), no. 1, 203–272. Zbl 0855.18007, MR 1301191, 10.1215/S0012-7094-94-07608-4
Reference: [14] Gubarev V.Yu., Kolesnikov P.S.: The Tits–Kantor–Koecher construction for Jordan dialgebras.Comm. Algebra 39 (2011), no. 2, 497–520. Zbl 1272.17032, MR 2773316, 10.1080/00927871003591967
Reference: [15] Gubarev V.Yu., Kolesnikov P.S.: Embedding of dendriform algebras into Rota–Baxter algebras.Cent. Eur. J. Math. 11 (2013), no. 2, 226–245. Zbl 1262.18009, MR 3000640, 10.2478/s11533-012-0138-z
Reference: [16] Hou D.P., Ni X., Bai C.: Pre-Jordan algebras.Math. Scand. 112 (2013), no. 1, 19–48. MR 3057597
Reference: [17] Jacobson N.: Structure and Representations of Jordan Algebras.American Mathematical Society, Providence, 1968. Zbl 0218.17010, MR 0251099
Reference: [18] Kolesnikov P.S.: Varieties of dialgebras and conformal algebras.Sib. Math. J. 49 (2008), no. 2, 257–272. Zbl 1164.17002, MR 2419658, 10.1007/s11202-008-0026-8
Reference: [19] Kolesnikov P.S., Voronin V.Yu.: On special identities for dialgebras.Linear Multilinear Algebra 61 (2013), no. 3, 377–391. Zbl 1273.17003, MR 3003431, 10.1080/03081087.2012.686108
Reference: [20] Loday J.-L.: Une version non commutative des algèbres de Lie: les algèbres de Leibniz.Enseign. Math. 39 (1993), 269–293. Zbl 0806.55009, MR 1252069
Reference: [21] Loday J.-L.: Dialgebras.in: Loday J.-L., Frabetti A., Chapoton F., Goichot F. (Eds), Dialgebras and related operads, Lectures Notes in Mathematics, 1763, Springer, Berlin, 2001, pp. 105–110. Zbl 0999.17002, MR 1860994
Reference: [22] Loday J.-L., Pirashvili T.: Universal enveloping algebras of Leibniz algebras and (co)homology.Math. Ann. 296 (1993), 139–158. Zbl 0821.17022, MR 1213376, 10.1007/BF01445099
Reference: [23] Loday J.-L., Ronco M.: Trialgebras and families of polytopes.in: Goerss P.G., Priddy S. (Eds.), Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory, Contemp. Math. 346 (2004), 369–398. Zbl 1065.18007, MR 2066507, 10.1090/conm/346/06296
Reference: [24] Loday J.-L., Vallette B.: Algebraic Operads.Gründlehren der mathematischen Wissenschaften, 346, Springer, Heidelberg, 2012. Zbl 1260.18001
Reference: [25] Pei J., Bai C., Guo L.: Splitting of operads and Rota–Baxter operators on operads.arXiv:1306.3046 [math.CT].
Reference: [26] Strohmayer H.: Operads of compatible structures and weighted partitions.J. Pure Appl. Algebra 212 (2008), 2522–2534. Zbl 1149.18006, MR 2440264, 10.1016/j.jpaa.2008.04.009
Reference: [27] Uchino K.: On distributive laws in derived bracket construction and homotopy theory of derived bracket Leibniz algebras.arXiv:1110.4188v5 [math.QA].
Reference: [28] Vallette B.: Homology of generalized partition posets.J. Pure Appl. Algebra 208 (2007), no. 2, 699–725. Zbl 1109.18002, MR 2277706, 10.1016/j.jpaa.2006.03.012
Reference: [29] Vallette B.: Manin products, Koszul duality, Loday algebras and Deligne conjecture.J. Reine Angew. Math. 620 (2008), 105–164. Zbl 1159.18001, MR 2427978
Reference: [30] Velasquez R., Felipe R.: Quasi-Jordan algebras.Comm. Algebra 36 (2008), no. 4, 1580–1602. Zbl 1188.17022, MR 2410352, 10.1080/00927870701865996
Reference: [31] Voronin V.: Special and exceptional Jordan dialgebras.J. Algebra Appl. 11 (2012), no. 2, 23 p. MR 2925443, 10.1142/S0219498811005531
Reference: [32] Zhevlakov K.A., Slin'ko A.M., Shestakov I.P., Shirshov A.I.: Rings That Are Nearly Associative.Academic Press, New York, 1982. Zbl 0487.17001, MR 0668355
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-4_1.pdf 324.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo