Previous |  Up |  Next

Article

Title: Partitioning bases of topological spaces (English)
Author: Soukup, Dániel T.
Author: Soukup, Lajos
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 4
Year: 2014
Pages: 537-566
Summary lang: English
.
Category: math
.
Summary: We investigate whether an arbitrary base for a dense-in-itself topological space can be partitioned into two bases. We prove that every base for a $T_3$ Lindelöf topology can be partitioned into two bases while there exists a consistent example of a first-countable, 0-dimensional, Hausdorff space of size $2^\omega $ and weight $\omega_1$ which admits a point countable base without a partition to two bases. (English)
Keyword: base
Keyword: resolvable
Keyword: partition
MSC: 03E35
MSC: 54A25
MSC: 54A35
idZBL: Zbl 06391561
idMR: MR3269015
.
Date available: 2014-10-09T10:01:36Z
Last updated: 2017-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143977
.
Reference: [1] Hajnal A., Hamburger P.: Set Theory.London Mathematical Society Student Texts, 48, Cambridge University Press, Cambridge, 1999, ISBN 0 521 59667 X. Zbl 0934.03057, MR 1728582
Reference: [2] Stone A.H.: On partitioning ordered sets into cofinal subsets.Mathematika 15 (1968), 217–222. Zbl 0164.33203, MR 0237386, 10.1112/S002557930000259X
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-4_10.pdf 424.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo