Previous |  Up |  Next

Article

Title: A preconditioner for the FETI-DP method for mortar-type Crouzeix-Raviart element discretization (English)
Author: Wang, Chunmei
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 6
Year: 2014
Pages: 653-672
Summary lang: English
.
Category: math
.
Summary: In this paper, we consider mortar-type Crouzeix-Raviart element discretizations for second order elliptic problems with discontinuous coefficients. A preconditioner for the FETI-DP method is proposed. We prove that the condition number of the preconditioned operator is bounded by $(1+\log (H/h))^2$, where $H$ and $h$ are mesh sizes. Finally, numerical tests are presented to verify the theoretical results. (English)
Keyword: FETI-DP
Keyword: Crouzeix-Raviart element
Keyword: nonstandard mortar condition
Keyword: preconditioner
MSC: 65N22
MSC: 65N30
MSC: 65N38
MSC: 65N55
idZBL: Zbl 06391455
idMR: MR3277732
DOI: 10.1007/s10492-014-0078-y
.
Date available: 2014-11-10T09:15:48Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143993
.
Reference: [1] Bernardi, C., Maday, Y., Patera, A. T.: A new nonconforming approach to domain decomposition: The mortar element method.H. Brezis et al. Nonlinear Partial Differential Equations and their Applications Collège de France Seminar, Vol. XI, Paris, France, 1989-1991 Logman Scientific & Technical. Pitman Res. Notes Math. Ser. 299 (1994), 13-51. Zbl 0797.65094, MR 1268898
Reference: [2] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods (3rd ed.).Texts in Applied Mathematics 15 Springer, New York (2008). Zbl 1135.65042, MR 2373954
Reference: [3] Dryja, M., Widlund, O. B.: A generalized FETI-DP method for a mortar discretization of elliptic problems.Domain Decomposition Methods in Science and Engineering I. Herrera, D. Keyes et al. National Autonomous University of Mexico (UNAM), México (2003), 27-38 (electronic). MR 2093732
Reference: [4] Farhat, C., Lesoinne, M., Pierson, K.: A scalable dual-primal domain decomposition method.Numer. Linear Algebra Appl. 7 (2000), 687-714. Zbl 1051.65119, MR 1802366, 10.1002/1099-1506(200010/12)7:7/8<687::AID-NLA219>3.0.CO;2-S
Reference: [5] Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., Rixen, D.: FETI-DP: a dual-primal unified FETI method---part I: A faster alternative to the two-level FETI method.Int. J. Numer. Methods Eng. 50 (2001), 1523-1544. MR 1813746, 10.1002/nme.76
Reference: [6] Kim, H. H., Lee, C.-O.: A preconditioner for the FETI-DP formulation with mortar methods in two dimensions.SIAM J. Numer. Anal. 42 (2005), 2159-2175. Zbl 1080.65117, MR 2139242, 10.1137/S0036142903423381
Reference: [7] Klawonn, A., Widlund, O. B., Dryja, M.: Dual-primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients.SIAM J. Numer. Anal. 40 (2002), 159-179 (electronic). Zbl 1032.65031, MR 1921914, 10.1137/S0036142901388081
Reference: [8] Mandel, J., Tezaur, R.: On the convergence of a dual-primal substructuring method.Numer. Math. 88 (2001), 543-558. Zbl 1003.65126, MR 1835470, 10.1007/s211-001-8014-1
Reference: [9] Mandel, J., Tezaur, R., Farhat, C.: A scalable substructuring method by Lagrange multipliers for plate bending problems.SIAM J. Numer. Anal. 36 (1999), 1370-1391 (electronic). Zbl 0956.74059, MR 1706770, 10.1137/S0036142997289896
Reference: [10] Marcinkowski, L.: The mortar element method with locally nonconforming elements.BIT 39 (1999), 716-739. Zbl 0944.65115, MR 1735101, 10.1023/A:1022343324625
Reference: [11] Marcinkowski, L.: A mortar element method for some discretizations of a plate problem.Numer. Math. 93 (2002), 361-386. Zbl 1036.74046, MR 1941401, 10.1007/s002110100389
Reference: [12] Marcinkowski, L.: Additive Schwarz method for mortar discretization of elliptic problems with $P_1$ nonconforming finite elements.BIT 45 (2005), 375-394. Zbl 1080.65118, MR 2176199, 10.1007/s10543-005-7123-x
Reference: [13] Marcinkowski, L.: A mortar finite element method for fourth order problems in two dimensions with Lagrange multipliers.SIAM J. Numer. Anal. 42 (2005), 1998-2019 (electronic). Zbl 1076.74055, MR 2139234, 10.1137/S0036142902387574
Reference: [14] Marcinkowski, L.: A preconditioner for a FETI-DP method for mortar element discretization of a 4th order problem in 2D.ETNA, Electron. Trans. Numer. Anal. 38 1-16 electronic only (2011). Zbl 1205.65318, MR 2871856
Reference: [15] Marcinkowski, L., Rahman, T.: Neumann-Neumann algorithms for a mortar Crouzeix-Raviart element for 2nd order elliptic problems.BIT 48 (2008), 607-626. Zbl 1180.65164, MR 2447988, 10.1007/s10543-008-0167-y
Reference: [16] Marcinkowski, L., Rahman, T.: A FETI-DP method for Crouzeix-Raviart finite element discretizations.Comput. Methods Appl. Math. 12 (2012), 73-91. Zbl 1284.65182, MR 3041002, 10.2478/cmam-2012-0005
Reference: [17] Pierson, K. H.: A family of domain decomposition methods for the massively parallel solution of computational mechanics problems.PhD thesis, University of Colorado at Boulder, Aerospace Engineering Sciences (2001).
Reference: [18] Rahman, T., Bjørstad, P., Xu, X.: The Crouzeix-Raviart FE on nonmatching grids with an approximate mortar condition.SIAM J. Numer. Anal. 46 (2008), 496-516. Zbl 1160.65344, MR 2377273, 10.1137/060663593
Reference: [19] Sarkis, M.: Nonstandard coarse spaces and Schwarz methods for elliptic problems with discontinuous coefficients using non-conforming elements.Numer. Math. 77 (1997), 383-406. Zbl 0884.65119, MR 1469678, 10.1007/s002110050292
Reference: [20] Tezaur, R.: Analysis of Lagrange multiplier based domain decomposition.PhD thesis, University of Colorado at Denver, Denver (1998). MR 2697697
Reference: [21] Toselli, A., Widlund, O.: Domain Decomposition Methods-Algorithms and Theory.Springer Series in Computational Mathematics 34 Springer, Berlin (2005). Zbl 1069.65138, MR 2104179
Reference: [22] Wohlmuth, B. I.: Discretization Methods and Iterative Solvers Based on Domain Decomposition.Lecture Notes in Computational Science and Engineering 17 Springer, Berlin (2001). Zbl 0966.65097, MR 1820470
.

Files

Files Size Format View
AplMat_59-2014-6_4.pdf 331.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo