Title:
|
De la Vallée Poussin type inequality and eigenvalue problem for generalized half-linear differential equation (English) |
Author:
|
Báňa, Libor |
Author:
|
Došlý, Ondřej |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
50 |
Issue:
|
4 |
Year:
|
2014 |
Pages:
|
193-203 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study the generalized half-linear second order differential equation via the associated Riccati type differential equation and Prüfer transformation. We establish a de la Vallée Poussin type inequality for the distance of consecutive zeros of a nontrivial solution and this result we apply to the “classical” half-linear differential equation regarded as a perturbation of the half-linear Euler differential equation with the so-called critical oscillation constant. In the second part of the paper we study a Dirichlet eigenvalue problem associated with the investigated half-linear equation. (English) |
Keyword:
|
generalized half-linear differential equation |
Keyword:
|
de la Vallée Poussin inequality |
Keyword:
|
half-linear Euler differential equation |
Keyword:
|
Dirichlet eigenvalue problem |
MSC:
|
34C10 |
idZBL:
|
Zbl 06487006 |
idMR:
|
MR3291849 |
DOI:
|
10.5817/AM2014-4-193 |
. |
Date available:
|
2014-12-09T14:39:17Z |
Last updated:
|
2016-04-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144017 |
. |
Reference:
|
[1] Agarwal, R.P., Grace, S.R., O’Regan, D.: Oscillation Theory of Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations.Kluwer Academic Publishers,Dordrecht-Boston-London, 2002. MR 2091751 |
Reference:
|
[2] Andres, J.: On the criterion of de la Vallée Poussin.Publ. Math. Debrecen 45 (1994), 145–152. MR 1291810 |
Reference:
|
[3] Bihari, I.: On the second order half-linear differential equation.Studia Sci. Math. Hungar. 3 (1968), 411–437. Zbl 0167.37403, MR 0267190 |
Reference:
|
[4] Bihari, I.: Notes on eigenvalues and zeros of the solutions of half-linear second order ordinary differential equation.Period. Math. Hungar. (1976), 117–125. MR 0437847, 10.1007/BF02082686 |
Reference:
|
[5] Bognár, G., Došlý, O.: Conditional oscillation and principal solution of generalized half-linear differential equation.Publ. Math. Debrecen 82 (2013), 451–459. Zbl 1299.34122, MR 3034358, 10.5486/PMD.2013.5374 |
Reference:
|
[6] Cohn, J.H.E.: On an oscillation criterion of de la Vallée Poussin.Quart. J. Math. Oxford Ser. (2) 39 (159) (1988), 173–174. Zbl 0668.34036, MR 0947498, 10.1093/qmath/39.2.173 |
Reference:
|
[7] de Vallée Poussin, Ch.: Sur l’équation différentielle linéqire du second order. Détermination d’une intégrale par deux valuers assignés. Extension aux équasions d’ordre $n$.J. Math. Pures Appl. (8) (1929), 125–144. |
Reference:
|
[8] Došlý, O., Fišnarová, S.: Half-linear oscillation criteria: perturbation in term involving derivative.Nonlinear Anal. 73 (2010), 3756–3766. Zbl 1207.34041, MR 2728552, 10.1016/j.na.2010.07.049 |
Reference:
|
[9] Došlý, O., Funková, H.: Perturbations of half-linear Euler differential equation and transformations of modified Riccati equation.Abstr. Appl. Anal. 2012 (2012), 19pp. Zbl 1296.34081, MR 2991019 |
Reference:
|
[10] Došlý, O., Lomtatidze, A.: Disconjugacy and disfocality criteria for singular half-linearsecond order differential equations.Ann. Polon. Math. 72 (1999), 273–284. MR 1738580 |
Reference:
|
[11] Došlý, O., Řehák, P.: Half-Linear Differential Equations.North Holland Mathematics Studies 202, Elsevier, Amsterdam, 2005. MR 2158903 |
Reference:
|
[12] Došlý, O., Řezníčková, J.: Conjugacy and principal solution of generalized half-linear second order differential equations.Electron. J. Qual. Theory Differ. Equ., Proc.9th Coll. QTDE 2012 (5) (2012), 1–13. MR 3338524 |
Reference:
|
[13] Došlý, O., Ünal, M.: Conditionally oscillatory half-linear differential equations.Acta Math. Hungar. 120 (2008), 147–163. MR 2431365, 10.1007/s10474-007-7120-4 |
Reference:
|
[14] Došlý, O., Yamaoka, N.: Oscillation constants for second-order ordinary differential equations related to elliptic equations with $p$-Laplacian.Nonlinear Anal. 113 (2015), 115–136. MR 3281849 |
Reference:
|
[15] Elber, Á., Kusano, T.: On differential equation $y^{\prime \prime }+p(t)\vert y^{\prime }\vert \,{\rm sgn}\, y+q(t)y=0$.Hiroshima Math. J. 22 (1992), 203–218. MR 1160048 |
Reference:
|
[16] Elbert, Á.: A half-linear second order differential equation.Colloq. Math. Soc. János Bolyai 30 (1979), 153–180. MR 0680591 |
Reference:
|
[17] Elbert, Á.: Generalized Riccati equation for half-linear second order differentia lequations.Colloq. Math. Soc. János Bolyai 47 (1984), 227–249. MR 0890544 |
Reference:
|
[18] Elbert, Á., Schneider, A.: Perturbations of the half-linear Euler differential equation.Result. Math. 37 (2000), 56–83. Zbl 0958.34029, MR 1742294, 10.1007/BF03322512 |
Reference:
|
[19] Fišnarová, S., Mařík, R.: Half-linear ODE and modified Riccati equation: comparison theorems, integral characterization of principal solution.Nonlinear Anal. 74 (2011), 6427–6433. Zbl 1229.34048, MR 2833426, 10.1016/j.na.2011.06.025 |
Reference:
|
[20] Fišnarová, S., Mařík, R.: Local estimates for modified Riccati equation in theory of half-linear differential equation.Electron. J. Qual. Theory Differ. Equ. 2012 (63) (2012), 15 pp. MR 2966805 |
Reference:
|
[21] Harris, B.J.: On the oscillation criterion of Cohn.Quart. J. Math. Oxford Ser. (2) 42 (167) (1988), 309–9313. MR 1120991 |
Reference:
|
[22] Hartman, P., Wintner, A.: On an oscillation criterion of De la Vallée Poussin.Quart. Appl. Math. 13 (1955), 330–332. Zbl 0066.06404, MR 0073773 |
Reference:
|
[23] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillatory half-linear differential equations and generalized Karamata functions.Nonlinear Anal. 64 (2006), 762–787. MR 2197094, 10.1016/j.na.2005.05.045 |
Reference:
|
[24] Kiguradze, I., Půža, B.: On the Vallée-Poussin problem for singular differential equations with deviating arguments.Arch. Math. (Brno) 33 (1–2) (1997), 127–138. Zbl 0914.34064, MR 1464307 |
Reference:
|
[25] Kusano, T., Manojlović, J., Tanigawa, T.: Existence of regularly varying solutions with nonzero indices of half-linear differential equations with retarded arguments.Comput. Math. Appl. 59 (2010), 411–425. Zbl 1189.34121, MR 2575528, 10.1016/j.camwa.2009.06.039 |
Reference:
|
[26] Willet, D.: Generalized de la Vallée Pousin disconjugacy test for linear differential equations.Canad. Math. Bull 14 (1971), 419–430. 10.4153/CMB-1971-073-3 |
. |