Previous |  Up |  Next

Article

Title: De la Vallée Poussin type inequality and eigenvalue problem for generalized half-linear differential equation (English)
Author: Báňa, Libor
Author: Došlý, Ondřej
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 50
Issue: 4
Year: 2014
Pages: 193-203
Summary lang: English
.
Category: math
.
Summary: We study the generalized half-linear second order differential equation via the associated Riccati type differential equation and Prüfer transformation. We establish a de la Vallée Poussin type inequality for the distance of consecutive zeros of a nontrivial solution and this result we apply to the “classical” half-linear differential equation regarded as a perturbation of the half-linear Euler differential equation with the so-called critical oscillation constant. In the second part of the paper we study a Dirichlet eigenvalue problem associated with the investigated half-linear equation. (English)
Keyword: generalized half-linear differential equation
Keyword: de la Vallée Poussin inequality
Keyword: half-linear Euler differential equation
Keyword: Dirichlet eigenvalue problem
MSC: 34C10
idZBL: Zbl 06487006
idMR: MR3291849
DOI: 10.5817/AM2014-4-193
.
Date available: 2014-12-09T14:39:17Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144017
.
Reference: [1] Agarwal, R.P., Grace, S.R., O’Regan, D.: Oscillation Theory of Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations.Kluwer Academic Publishers,Dordrecht-Boston-London, 2002. MR 2091751
Reference: [2] Andres, J.: On the criterion of de la Vallée Poussin.Publ. Math. Debrecen 45 (1994), 145–152. MR 1291810
Reference: [3] Bihari, I.: On the second order half-linear differential equation.Studia Sci. Math. Hungar. 3 (1968), 411–437. Zbl 0167.37403, MR 0267190
Reference: [4] Bihari, I.: Notes on eigenvalues and zeros of the solutions of half-linear second order ordinary differential equation.Period. Math. Hungar. (1976), 117–125. MR 0437847, 10.1007/BF02082686
Reference: [5] Bognár, G., Došlý, O.: Conditional oscillation and principal solution of generalized half-linear differential equation.Publ. Math. Debrecen 82 (2013), 451–459. Zbl 1299.34122, MR 3034358, 10.5486/PMD.2013.5374
Reference: [6] Cohn, J.H.E.: On an oscillation criterion of de la Vallée Poussin.Quart. J. Math. Oxford Ser. (2) 39 (159) (1988), 173–174. Zbl 0668.34036, MR 0947498, 10.1093/qmath/39.2.173
Reference: [7] de Vallée Poussin, Ch.: Sur l’équation différentielle linéqire du second order. Détermination d’une intégrale par deux valuers assignés. Extension aux équasions d’ordre $n$.J. Math. Pures Appl. (8) (1929), 125–144.
Reference: [8] Došlý, O., Fišnarová, S.: Half-linear oscillation criteria: perturbation in term involving derivative.Nonlinear Anal. 73 (2010), 3756–3766. Zbl 1207.34041, MR 2728552, 10.1016/j.na.2010.07.049
Reference: [9] Došlý, O., Funková, H.: Perturbations of half-linear Euler differential equation and transformations of modified Riccati equation.Abstr. Appl. Anal. 2012 (2012), 19pp. Zbl 1296.34081, MR 2991019
Reference: [10] Došlý, O., Lomtatidze, A.: Disconjugacy and disfocality criteria for singular half-linearsecond order differential equations.Ann. Polon. Math. 72 (1999), 273–284. MR 1738580
Reference: [11] Došlý, O., Řehák, P.: Half-Linear Differential Equations.North Holland Mathematics Studies 202, Elsevier, Amsterdam, 2005. MR 2158903
Reference: [12] Došlý, O., Řezníčková, J.: Conjugacy and principal solution of generalized half-linear second order differential equations.Electron. J. Qual. Theory Differ. Equ., Proc.9th Coll. QTDE 2012 (5) (2012), 1–13. MR 3338524
Reference: [13] Došlý, O., Ünal, M.: Conditionally oscillatory half-linear differential equations.Acta Math. Hungar. 120 (2008), 147–163. MR 2431365, 10.1007/s10474-007-7120-4
Reference: [14] Došlý, O., Yamaoka, N.: Oscillation constants for second-order ordinary differential equations related to elliptic equations with $p$-Laplacian.Nonlinear Anal. 113 (2015), 115–136. MR 3281849
Reference: [15] Elber, Á., Kusano, T.: On differential equation $y^{\prime \prime }+p(t)\vert y^{\prime }\vert \,{\rm sgn}\, y+q(t)y=0$.Hiroshima Math. J. 22 (1992), 203–218. MR 1160048
Reference: [16] Elbert, Á.: A half-linear second order differential equation.Colloq. Math. Soc. János Bolyai 30 (1979), 153–180. MR 0680591
Reference: [17] Elbert, Á.: Generalized Riccati equation for half-linear second order differentia lequations.Colloq. Math. Soc. János Bolyai 47 (1984), 227–249. MR 0890544
Reference: [18] Elbert, Á., Schneider, A.: Perturbations of the half-linear Euler differential equation.Result. Math. 37 (2000), 56–83. Zbl 0958.34029, MR 1742294, 10.1007/BF03322512
Reference: [19] Fišnarová, S., Mařík, R.: Half-linear ODE and modified Riccati equation: comparison theorems, integral characterization of principal solution.Nonlinear Anal. 74 (2011), 6427–6433. Zbl 1229.34048, MR 2833426, 10.1016/j.na.2011.06.025
Reference: [20] Fišnarová, S., Mařík, R.: Local estimates for modified Riccati equation in theory of half-linear differential equation.Electron. J. Qual. Theory Differ. Equ. 2012 (63) (2012), 15 pp. MR 2966805
Reference: [21] Harris, B.J.: On the oscillation criterion of Cohn.Quart. J. Math. Oxford Ser. (2) 42 (167) (1988), 309–9313. MR 1120991
Reference: [22] Hartman, P., Wintner, A.: On an oscillation criterion of De la Vallée Poussin.Quart. Appl. Math. 13 (1955), 330–332. Zbl 0066.06404, MR 0073773
Reference: [23] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillatory half-linear differential equations and generalized Karamata functions.Nonlinear Anal. 64 (2006), 762–787. MR 2197094, 10.1016/j.na.2005.05.045
Reference: [24] Kiguradze, I., Půža, B.: On the Vallée-Poussin problem for singular differential equations with deviating arguments.Arch. Math. (Brno) 33 (1–2) (1997), 127–138. Zbl 0914.34064, MR 1464307
Reference: [25] Kusano, T., Manojlović, J., Tanigawa, T.: Existence of regularly varying solutions with nonzero indices of half-linear differential equations with retarded arguments.Comput. Math. Appl. 59 (2010), 411–425. Zbl 1189.34121, MR 2575528, 10.1016/j.camwa.2009.06.039
Reference: [26] Willet, D.: Generalized de la Vallée Pousin disconjugacy test for linear differential equations.Canad. Math. Bull 14 (1971), 419–430. 10.4153/CMB-1971-073-3
.

Files

Files Size Format View
ArchMathRetro_050-2014-4_1.pdf 478.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo