Title:
|
Orthomodular Posets Can Be Organized as Conditionally Residuated Structures (English) |
Author:
|
Chajda, Ivan |
Author:
|
Länger, Helmut |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
53 |
Issue:
|
2 |
Year:
|
2014 |
Pages:
|
29-33 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
It is proved that orthomodular posets are in a natural one-to-one correspondence with certain residuated structures. (English) |
Keyword:
|
Orthomodular poset |
Keyword:
|
partial commutative groupoid with unit |
Keyword:
|
conditionally residuated structure |
Keyword:
|
divisibility condition |
Keyword:
|
orthogonality condition |
MSC:
|
06A11 |
MSC:
|
06C15 |
idZBL:
|
Zbl 06416998 |
idMR:
|
MR3331004 |
. |
Date available:
|
2014-12-16T14:53:12Z |
Last updated:
|
2023-08-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144037 |
. |
Reference:
|
[1] Bělohlávek, R.: Fuzzy Relational Systems. Foundations and Principles. Kluwer, New York, 2002. Zbl 1067.03059 |
Reference:
|
[2] Beran, L.: Orthomodular Lattices, Algebraic Approach. Academia, Prague, 1984. MR 0785005 |
Reference:
|
[3] Chajda, I., Halaš, R.: Effect algebras are conditionally residuated structures. Soft Computing 15 (2011), 1383–1387. Zbl 1247.03134, 10.1007/s00500-010-0677-9 |
Reference:
|
[4] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer, Dordrecht, 2000. MR 1861369 |
Reference:
|
[5] Engesser, K., Gabbay, D. M., Lehmann, D.: Handbook of Quantum Logic and Quantum Structures – Quantum Logic. Elsevier/North-Holland, Amsterdam, 2009. Zbl 1184.81003, MR 2724659 |
Reference:
|
[6] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1331–1352. MR 1304942, 10.1007/BF02283036 |
Reference:
|
[7] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier, Amsterdam, 2007. Zbl 1171.03001, MR 2531579 |
Reference:
|
[8] Kalmbach, G.: Orthomodular Lattices. Academic Press, London, 1983. Zbl 0528.06012, MR 0716496 |
Reference:
|
[9] Matoušek, M., Pták, P.: Orthocomplemented posets with a symmetric difference. Order 26 (2009), 1–21. Zbl 1201.06006, MR 2487165, 10.1007/s11083-008-9102-8 |
Reference:
|
[10] Navara, M.: Characterization of state spaces of orthomodular structures. In: Proc. Summer School on Real Analysis and Measure Theory, Grado, Italy, (1997), 97–123. |
Reference:
|
[11] Pták, P.: Some nearly Boolean orthomodular posets. Proc. Amer. Math. Soc. 126 (1998), 2039–2046. Zbl 0894.06003, MR 1452822, 10.1090/S0002-9939-98-04403-7 |
Reference:
|
[12] Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer, Dordrecht, 1991. MR 1176314 |
. |