Previous |  Up |  Next

Article

Title: Zero Dissipative DIRKN Pairs of Order 5(4) for Solving Special Second Order IVPs (English)
Author: Imoni, S. O.
Author: Ikhile, M. N. O.
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 53
Issue: 2
Year: 2014
Pages: 53-69
Summary lang: English
.
Category: math
.
Summary: For initial value problem (IVPs) in ordinary second order differential equations of the special form $y^{\prime \prime }=f\left(x,y\right)$ possessing oscillating solutions, diagonally implicit Runge–Kutta–Nystrom (DIRKN) formula-pairs of orders 5(4) in 5-stages are derived in this paper. The method is zero dissipative, thus it possesses a non-empty interval of periodicity. Some numerical results are presented to show the applicability of the new method compared with existing Runge–Kutta (RK) method applied to the problem reduced to first-order system. (English)
Keyword: Initial value problems
Keyword: Runge–Kutta–Nystrom pairs
Keyword: zero dissipative
MSC: 65L05
idZBL: Zbl 1311.65098
idMR: MR3331006
.
Date available: 2014-12-16T14:59:16Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/144039
.
Reference: [1] Allen, R. C., Wing, G. M.: An invariant imbedding algorithm for the solution of inhomogeneous linear two-point boundary value-problems. J. Computer Physics 14 (1974), 40–45. Zbl 0273.65065, MR 0381323, 10.1016/0021-9991(74)90004-7
Reference: [2] Butcher, J. C., Chen, D. J.: A new Type of Singly-implicit Runge–Kutta Method. Applied Numerical Mathematics 34 (2000), 179–188. Zbl 0954.65058, MR 1770422, 10.1016/S0168-9274(99)00126-9
Reference: [3] Dormand, J. R., El-Mikkawy, M. E. A., Prince, P. J.: Families of Runge–Kutta Nystrom Formulas. IMA J. Num. Analysis 7 (1987), 235–250. MR 0968090, 10.1093/imanum/7.2.235
Reference: [4] El-Mikkawy, M., El-Dousky, R. A.: New optimized non-FSAL Embedded Runge–Kutta Nystrom algorithms of orders 6 and 4 in six stages. Applied Mathematics and computer 145 (2003), 33–43. MR 2005974, 10.1016/S0096-3003(02)00436-8
Reference: [5] Fehlberg, E.: Classical eight and lower-order Runge–Kutta–Nystrom formulae with step size control for the special second-order differential equations. Technical Report, R-381, NASA, 1972.
Reference: [6] Fillipi, S., Graf, J.: New Runge–Kutta–Nystrom Formulae pairs of order $8(7)$, $9(8)$, $10(9)$ and $11(10)$ for differential equation of the form $y^{\prime \prime } =f(x,y)$. J. computing Appl. Math. 14 (1986), 362–370. MR 0831080
Reference: [7] Ferracina, L., Spijker, M. N.: Strong stability of singly-diagonally implicit Runge–Kutta methods. Applied Numerical Mathematics 58 (2008), 1675–1686. Zbl 1153.65080, MR 2458475, 10.1016/j.apnum.2007.10.004
Reference: [8] Hairer, E., Norsett, S. P., Wanner, G.: Solving Ordinary Differential Equations I, Non Stiff problems. springer-Verlag, Berlin, 1993. MR 1227985
Reference: [9] Imoni, S. O., Otunta, F. O., Ramamohan, T. R.: Embedded implicit Runge–Kutta–Nystrom method for solving second order differential equations. International Journal of Computer Mathematics 83, 11 (2006), 777–784. Zbl 1111.65066, MR 2284139, 10.1080/00207160601084505
Reference: [10] Imoni, S. O., Otunta, F. O., Ikhile, M. N. O.: Embedded diagonally implicit Runge–Kutta–Nystrom method of order two and three for special second order differential equations. The Journal of the Mathematical Association of Nigeria (ABACUS) 34, 213 (2007), 363–373.
Reference: [11] Kanagarajam, K., Sambath, M.: Runge–Kutta–Nystrom method of order three for solving Fuzzy Differential Equations. Computational methods in Applied Mathematics 10, 2 (2010), 195–203. MR 2770290
Reference: [12] Papakostas, S. N., Tsitouras, Ch.: High phase-lag order Runge–Kutta–Nystrom pairs. SIAM J. Sci. Comput. 21 (2002), 747–763. MR 1718695, 10.1137/S1064827597315509
Reference: [13] Qinghong, Li, Yongzhong, S.: Explicit one-step p-stable methods for second order periodic initial value problems. Numerical Mathematics, Journal of Chinese Universities (English series) 15, 3 (2006), 237–247. Zbl 1132.65066, MR 2296247
Reference: [14] Sharp, P. W., Fine, J. M.: A contrast of direct and transformed Nystrom pairs. J. Comput. Appl. Math 42 (1992), 293–308. Zbl 0765.65082, MR 1187675, 10.1016/0377-0427(92)90082-9
Reference: [15] Sharp, P. W., Fine, J. M., Burrage, K.: Two-stage and three-stage diagonally implicit Runge–Kutta–Nystrom methods of orders three and four. IMA Journal Numerical Analysis 10 (1990), 489–504. Zbl 0711.65057, MR 1078506, 10.1093/imanum/10.4.489
Reference: [16] Sommeijer, B. P.: A note on a diagonally implicit Runge–Kutta–Nystrom Method. J. Comput. Appl. Math. 19 (1987), 395–399. Zbl 0637.65065, MR 0907809, 10.1016/0377-0427(87)90208-1
Reference: [17] Simos, T. E., Famelis, I. T., Tsitouras, Ch.: Zero dissipative, explicit Numerov-type methods for second order IVPs with oscillating solutions. Numerical Algorithms 34 (2003), 27–40. Zbl 1031.65080, MR 2015576, 10.1023/A:1026167824656
Reference: [18] Simos, T. E., Dimas, E., Sideridis, A. B.: A Runge–Kutta–Nystrom method for the numerical integration of special second-order periodic initial-value problems. J. Computational and Applied Maths. 51 (1994), 317–326. Zbl 0872.65066, MR 1300319, 10.1016/0377-0427(92)00114-O
Reference: [19] Van der Houwen, P. J., Sommeijer, B. P.: Diagonally Implicit Runge–Kutta–Nystrom methods for oscillatory problems. SIAM J. Numerical Analysis 26, 2 (1989), 414–429. Zbl 0676.65072, MR 0987398, 10.1137/0726023
.

Files

Files Size Format View
ActaOlom_53-2014-2_4.pdf 398.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo