Previous |  Up |  Next


Title: Generalized Boundary Value Problems for Nonlinear Fractional Langevin Equations (English)
Author: Li, Xuezhu
Author: Medveď, Milan
Author: Wang, Jin Rong
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 53
Issue: 2
Year: 2014
Pages: 85-100
Summary lang: English
Category: math
Summary: In this paper, generalized boundary value problems for nonlinear fractional Langevin equations is studied. Some new existence results of solutions in the balls with different radius are obtained when the nonlinear term satisfies nonlinear Lipschitz and linear growth conditions. Finally, two examples are given to illustrate the results. (English)
Keyword: Nonlinear fractional Langevin equations
Keyword: boundary value problems
Keyword: existence
Keyword: fixed point theorem
MSC: 26A33
MSC: 34A12
MSC: 34G20
idZBL: Zbl 1318.34008
idMR: MR3331008
Date available: 2014-12-16T15:07:59Z
Last updated: 2020-01-05
Stable URL:
Reference: [1] Baleanu, D., Machado, J. A. T., Luo, A. C.-J.: Fractional Dynamics and Control. Springer, Berlin, 2012. Zbl 1231.93003, MR 2905887
Reference: [2] Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics Vol. 2014, dmlbpublisherSpringer, Berlin, 2010. Zbl 1215.34001, MR 2680847
Reference: [3] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. Vol. 204, Elsevier Science, 2006. Zbl 1092.45003, MR 2218073
Reference: [4] Lakshmikantham, V., Leela, S., Vasundhara Devi, J.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, 2009. Zbl 1188.37002
Reference: [5] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, 1993. MR 1219954
Reference: [6] Michalski, M. W.: Derivatives of Noninteger Order and Their Applications. Dissertationes Mathematicae 328, Inst. Math., Polish Acad. Sci., 1993. Zbl 0880.26007, MR 1247113
Reference: [7] Podlubny, I.: Fractional Differential Equations. Academic Press, 1999. Zbl 0924.34008, MR 1658022
Reference: [8] Tarasov, V. E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. dmlbpublisherSpringer, 2011. MR 2796453
Reference: [9] Staněk, S.: Limit properties of positive solutions of fractional boundary value problems. Appl. Math. Comput. 219 (2012), 2361–2370. Zbl 1308.34104, MR 2988118, 10.1016/j.amc.2012.09.008
Reference: [10] Staněk, S.: Two-point boundary value problems for the generalized Bagley–Torvik fractional differential equation. Cent. Eur. J. Math. 11 (2013), 574–593. Zbl 1262.34008, MR 3016324, 10.2478/s11533-012-0141-4
Reference: [11] O’Regan, D., Staněk, S.: Fractional boundary value problems with singularities in space variables. Nonlinear Dyn. 71 (2013), 641–652. Zbl 1268.34023, MR 3030127, 10.1007/s11071-012-0443-x
Reference: [12] Agarwal, R. P., O’Regan, D., Staněk, S.: Positive solutions for mixed problems of singular fractional differential equations. Mathematische Nachrichten 11 (2011), 1–15.
Reference: [13] Agarwal, R. P., O’Regan, D., Staněk, S.: Positive solutions for Dirichlet problems of singular nonlinear frcational differentil equations. J. Math. Anal. Appl. 37 (2010), 57–68. 10.1016/j.jmaa.2010.04.034
Reference: [14] Agarwal, R. P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta. Appl. Math. 109 (2010), 973–1033. Zbl 1198.26004, MR 2596185, 10.1007/s10440-008-9356-6
Reference: [15] Ahmad, B., Nieto, J. J.: Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray–Schauder degree theory. Topol. Methods Nonlinear Anal. 35 (2010), 295–304. Zbl 1245.34008, MR 2676818
Reference: [16] Bai, Z.: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal., TMA 72 (2010), 916–924. Zbl 1187.34026, MR 2579357
Reference: [17] Benchohra, M., Henderson, J., Ntouyas, S. K., Ouahab, A.: Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338 (2008), 1340–1350. Zbl 1209.34096, MR 2386501, 10.1016/j.jmaa.2007.06.021
Reference: [18] Mophou, G. M., N’Guérékata, G. M.: Existence of mild solutions of some semilinear neutral fractional functional evolution equations with infinite delay. Appl. Math. Comput. 216 (2010), 61–69. Zbl 1191.34098, MR 2596132, 10.1016/j.amc.2009.12.062
Reference: [19] Wang, J., Fec̆kan, M., Zhou, Y.: On the new concept of solutions and existence results for impulsive fractional evolution equations. Dynam. Part. Differ. Eq. 8 (2011), 345–361. Zbl 1264.34014, MR 2901608, 10.4310/DPDE.2011.v8.n4.a3
Reference: [20] Wang, J., Zhou, Y.: Analysis of nonlinear fractional control systems in Banach spaces. Nonlinear Anal., TMA 74 (2011), 5929–5942. Zbl 1223.93059, MR 2833364
Reference: [21] Zhang, S.: Existence of positive solution for some class of nonlinear fractional differential equations. J. Math. Anal. Appl. 278 (2003), 136–148. Zbl 1026.34008, MR 1963470, 10.1016/S0022-247X(02)00583-8
Reference: [22] Zhou, Y., Jiao, F.: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal., RWA 11 (2010), 4465–4475. Zbl 1260.34017, MR 2683890
Reference: [23] Zhou, Y., Jiao, F., Li, J.: Existence and uniqueness for $p$-type fractional neutral differential equations. Nonlinear Anal., TMA 71 (2009), 2724–2733. Zbl 1175.34082, MR 2532797
Reference: [24] Lutz, E.: Fractional Langevin equation. Phys. Rev. E 64, 051106 (2001), 1–4. 10.1103/PhysRevE.64.051106
Reference: [25] Fa, K. S.: Generalized Langevin equation with fractional derivative and long-time correlation function. Phys. Rev. E 73, 061104 (2006), 1–4. 10.1103/PhysRevE.73.061104
Reference: [26] Fa, K. S.: Fractional Langevin equation and Riemann–CLiouville fractional derivative. Eur. Phys. J. E 24 (2007), 139–143. 10.1140/epje/i2007-10224-2
Reference: [27] Kobolev, V., Romanov, E.: Fractional Langevin equation to describe anomalous diffusion. Prog. Theor. Phys. Suppl. 139 (2000), 470–476. 10.1143/PTPS.139.470
Reference: [28] Picozzi, S., West, B.: Fractional Langevin model of memory in financial markets. Phys. Rev. E 66, 046118 (2002), 1–12. MR 1935186, 10.1103/PhysRevE.66.046118
Reference: [29] Bazzani, A., Bassi, G., Turchetti, G.: Diffusion and memory effects for stochastic processes and fractional Langevin equations. Physica A 324 (2003), 530–550. Zbl 1050.82029, MR 1982904, 10.1016/S0378-4371(03)00073-6
Reference: [30] Lim, S. C., Li, M., Teo, L. P.: Langevin equation with two fractional orders. Phys. Lett. A 372 (2008), 6309–6320. Zbl 1225.82049, MR 2462401, 10.1016/j.physleta.2008.08.045
Reference: [31] Ahmad, B., Nieto, J. J.: Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions. Int. J. Difference Equ. 2010, ID 649486 (2010), 1–10. Zbl 1207.34007, MR 2575288
Reference: [32] Ahmad, B., Eloe, P.: A nonlocal boundary value problem for a nonlinear fractional differential equation with two indices. Commun. Appl. Nonlinear Anal. 17 (2010), 69–80. Zbl 1275.34005, MR 2721923
Reference: [33] Ahmad, B., Nieto, J. J., Alsaedi, A., El-Shahed, M.: A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal., RWA 13 (2012), 599–606. Zbl 1238.34008, MR 2846866
Reference: [34] Chen, A., Chen, Y.: Existence of solutions to nonlinear Langevin equation involving two fractional orders with boundary value conditions. Bound. Value Probl. 2011, ID 516481 (2011), 1–17. Zbl 1228.34016, MR 2783108
Reference: [35] Ibrahim, R. W.: Existence of nonlinear Lane–Emden equation of fractional order. Math. Notes, Miskolc 13 (2012), 39–52. Zbl 1265.34216, MR 2954543
Reference: [36] Sandev, T., Tomovski, Ž., Dubbeldam, J. L. A.: Generalized Langevin equation with a three parameter Mittag–Leffler noise. Physica A 390 (2011), 3627–3636. 10.1016/j.physa.2011.05.039
Reference: [37] Sandev, T., Metzler, R., Tomovski, Ž.: Velocity and displacement correlation functions for fractional generalized Langevin equations. Fract. Calc. Appl. Anal. 15 (2012), 426–450. Zbl 1274.82045, MR 2944109, 10.2478/s13540-012-0031-2
Reference: [38] Smart, D. R.: Fixed Point Theorems. Cambridge University Press, Cambridge, 1980. Zbl 0427.47036, MR 0467717
Reference: [39] Wang, J., Dong, X., Zhou, Y.: Analysis of nonlinear integral equations with Erdélyi–Kober fractional operator. Commun. Nonlinear Sci. Numer. Simulat. 17 (2012), 3129–3139. Zbl 1298.45011, MR 2904208, 10.1016/j.cnsns.2011.12.002


Files Size Format View
ActaOlom_53-2014-2_6.pdf 266.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo