[1] Backlund, R.: Sur les zéros de la fonction $\zeta (s)$ de Riemann.  C. R. Acad. Sci. Paris 158 (1914), 1979–1982.
[2] Bellman, R. A.: 
A Brief Introduction to Theta Functions.  Holt, Rinehart and Winston, New York, 1961. 
MR 0125252 | 
Zbl 0098.28301[5] Ditkine, V., Proudnikov, A.: 
Transformations Integrales et Calcul Opèrationnel.  Mir, Moscow, 1978. 
MR 0622210[6] Edwards, H. M.: 
Riemann’s Zeta function.  Pure and Applied Mathematics 58, Academic Press, New York–London, 1974. 
MR 0466039 | 
Zbl 0315.10035[7] Erdelyi, I. et al.: Higher Trascendental Functions.  Bateman Manuscript Project 1, McGraw-Hill, New York, 1953.
[8] Euler, L.: Remarques sur un beau rapport entre les séries des puissances tant directes que réciproques.  Hist. Acad. Roy. Sci. Belles-Lettres Berlin 17 (1768), 83–106, (Also in: Opera Omnia, Ser. 1, vol. 15, 70–90).
[10] Ingham, A. E.: 
The Distribution of Prime Numbers.  Cambridge Univ. Press, Cambridge, 1990. 
MR 1074573 | 
Zbl 0715.11045[11] Jacobi, C. G. I.: Fundamenta Nova Theoriae Functionum Ellipticarum.  Sec. 40, Königsberg, 1829.
[12] Lapidus, M. L., van Frankenhuijsen, M.: 
Fractal Geometry, Complex Dimension and Zeta Functions.  Springer-Verlag, New York, 2006. 
MR 2245559[13] Legendre, A. M.: Mémoires de la classe des sciences mathématiques et phisiques de l’Institut de France, Paris.  (1809), 477–490.
[14] Ossicini, A.: 
An alternative form of the functional equation for Riemann’s Zeta function.  Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 56 (2008/9), 95–111. 
MR 2604733[15] Riemann, B.: Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse.  Gesammelte Werke, Teubner, Leipzig, 1892, reprinted Dover, New York, 1953, first published Monatsberichte der Berliner Akademie, November 1859.
[16] Stirling, J.: Methodus differentialis: sive tractatus de summatione et interpolatione serierum infinitarum.  Gul. Bowyer, London, 1730.
[17] Srivastava, H. M., Choi, J.: 
Series Associated with the Zeta and Related Functions.  Kluwer Academic Publishers, Dordrecht–Boston–London, 2001. 
MR 1849375 | 
Zbl 1014.33001[18] Titchmarsh, E. C., Heath-Brown, D. R.: 
The Theory of the Riemann Zeta-Function.  2nd ed., Oxford Univ. Press, Oxford, 1986. 
MR 0882550[19] Varadarajan, V. S.: 
Euler Through Time: A New Look at Old Themes.  American Mathematical Society, 2006. 
MR 2219954 | 
Zbl 1096.01013[21] Weil, A.: 
Number Theory: an Approach Through History from Hammurapi to Legendre.  Birkhäuser, Boston, 2007. 
MR 2303999 | 
Zbl 1149.01013[22] Whittaker, E. T., Watson, G. N.: 
A Course of Modern Analysis.  4th ed., Cambridge Univ. Press, Cambridge, 1988. 
MR 1424469