Previous |  Up |  Next

Article

Title: How many are affine connections with torsion (English)
Author: Dušek, Zdeněk
Author: Kowalski, Oldřich
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 50
Issue: 5
Year: 2014
Pages: 257-264
Summary lang: English
.
Category: math
.
Summary: The question how many real analytic affine connections exist locally on a smooth manifold $M$ of dimension $n$ is studied. The families of general affine connections with torsion and with skew-symmetric Ricci tensor, or symmetric Ricci tensor, respectively, are described in terms of the number of arbitrary functions of $n$ variables. (English)
Keyword: affine connection
Keyword: Ricci tensor
Keyword: Cauchy-Kowalevski Theorem
MSC: 35A10
MSC: 35F35
MSC: 35G50
MSC: 35Q99
idZBL: Zbl 06487010
idMR: MR3303775
DOI: 10.5817/AM2014-5-257
.
Date available: 2015-01-07T14:50:34Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144068
.
Reference: [1] Arias-Marco, T., Kowalski, O.: Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds.Monatsh. Math. 153 (2008), 1–18. Zbl 1155.53009, MR 2366132, 10.1007/s00605-007-0494-0
Reference: [2] Dušek, Z., Kowalski, O.: How many are torsion-less affine connections in general dimension.to appear in Adv. Geom.
Reference: [3] Egorov, Yu.V., Shubin, M.A.: Foundations of the Classical Theory of Partial Differential Equations.Springer-Verlag, Berlin, 1998. Zbl 0895.35003, MR 1657445
Reference: [4] Eisenhart, L.P.: Fields of parallel vectors in a Riemannian geometry.Trans. Amer. Math. Soc. 27 (4) (1925), 563–573. MR 1501329, 10.1090/S0002-9947-1925-1501329-4
Reference: [5] Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces.American Mathematical Soc., 1978. Zbl 0451.53038, MR 0514561
Reference: [6] Kobayashi, S., Nomizu, N.: Foundations of differential geometry I., Wiley Classics Library, 1996.
Reference: [7] Kowalevsky, S.: Zur Theorie der partiellen Differentialgleichung.J. Reine Angew. Math. 80 (1875), 1–32.
Reference: [8] Kowalski, O., Sekizawa, M.: Diagonalization of three-dimensional pseudo-Riemannian metrics.J. Geom. Phys. 74 (2013), 251–255. Zbl 1280.53020, MR 3118584, 10.1016/j.geomphys.2013.08.010
Reference: [9] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and some Generalizations.Palacky University, Olomouc, 2009. MR 2682926
Reference: [10] Nomizu, K., Sasaki, T.: Affine Differential Geometry.Cambridge University Press, 1994. Zbl 0834.53002, MR 1311248
Reference: [11] Petrovsky, I.G.: Lectures on Partial Differential Equations.Dover Publications, Inc., New York, 1991. MR 1160355
.

Files

Files Size Format View
ArchMathRetro_050-2014-5_2.pdf 430.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo