Previous |  Up |  Next

Article

Title: Uniqueness of the stereographic embedding (English)
Author: Eastwood, Michael
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 50
Issue: 5
Year: 2014
Pages: 265-271
Summary lang: English
.
Category: math
.
Summary: The standard conformal compactification of Euclidean space is the round sphere. We use conformal geodesics to give an elementary proof that this is the only possible conformal compactification. (English)
Keyword: stereographic
Keyword: conformal circles
Keyword: compactification
MSC: 53A30
MSC: 53C22
idZBL: Zbl 06487011
idMR: MR3303776
DOI: 10.5817/AM2014-5-265
.
Date available: 2015-01-07T14:51:25Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144069
.
Reference: [1] Bailey, T.N., Eastwood, M.G.: Conformal circles and parametrizations of curves in conformal manifolds.Proc. Amer. Math. Soc. 108 (1990), 215–221. Zbl 0684.53016, MR 0994771, 10.1090/S0002-9939-1990-0994771-7
Reference: [2] Cartan, É.: Les espaces à connexion conforme.Ann. Soc. Polon. Math. (1923), 171–221.
Reference: [3] Francès, C.: Rigidity at the boundary for conformal structures and other Cartan geometries.arXiv:0806:1008.
Reference: [4] Francès, C.: Sur le groupe d’automorphismes des géométries paraboliques de rang 1.Ann. Sci. École Norm. Sup. 40 (2007), 741–764. Zbl 1135.53016, MR 2382860
Reference: [5] : The Maple program: http://www.maplesoft.com.ple program: http://www.maplesoft.com.
Reference: [6] Tod, K.P.: Some examples of the behaviour of conformal geodesics.J. Geom. Phys. 62 (2012), 1778–1792. Zbl 1245.53042, MR 2925827, 10.1016/j.geomphys.2012.03.010
Reference: [7] Yano, K.: The Theory of Lie Derivatives and its Applications.North-Holland 1957. Zbl 0077.15802, MR 0088769
.

Files

Files Size Format View
ArchMathRetro_050-2014-5_3.pdf 462.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo