Previous |  Up |  Next

Article

Title: Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle (English)
Author: Janyška, Josef
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 50
Issue: 5
Year: 2014
Pages: 297-316
Summary lang: English
.
Category: math
.
Summary: The phase space of general relativistic test particle is defined as the 1-jet space of motions. A Lorentzian metric defines the canonical contact structure on the odd-dimensional phase space. In the paper we study infinitesimal symmetries of the gravitational contact phase structure which are not generated by spacetime infinitesimal symmetries, i.e. they are hidden symmetries. We prove that Killing multivector fields admit hidden symmetries of the gravitational contact phase structure and we give the explicit description of such hidden symmetries. (English)
Keyword: phase space
Keyword: gravitational contact phase structure
Keyword: gravitational Jacobi phase structure
Keyword: infinitesimal symmetry
Keyword: hidden symmetry
Keyword: Killing multivector field
MSC: 58A20
MSC: 70G45
MSC: 70H33
MSC: 70H40
MSC: 70H45
idZBL: Zbl 06487014
idMR: MR3303779
DOI: 10.5817/AM2014-5-297
.
Date available: 2015-01-07T14:58:28Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144072
.
Reference: [1] Crampin, M.: Hidden symmetries and Killing tensors.Reports Math. Phys. 20 (1984), 31–40. Zbl 0551.58019, MR 0761328, 10.1016/0034-4877(84)90069-7
Reference: [2] de Leon, M., Tuynman, G.M.: A universal model for cosymplectic manifolds.J. Geom. Phys. 20 (1996), 77–86. Zbl 0861.53026, MR 1407405, 10.1016/0393-0440(96)00047-2
Reference: [3] Gielen, S., Wise, D.K.: Lifting general relativity to observer space.J. Math. Phys. 54 (2013), 29pp., 052501. Zbl 1285.83005, MR 3098929, 10.1063/1.4802878
Reference: [4] Iwai, T.: Symmetries in relativistic dynamics of a charged particle.Ann. Inst. H. Poincaré Sect. A (N.S.) 25 (1976), 335–343. Zbl 0339.53039, MR 0434248
Reference: [5] Janyška, J.: Special phase functions and phase infinitesimal symmetries in classical general relativity.AIP Conf. Proc. 1460, XX Internat. Fall Workshop on Geometry and Physics, 2012, pp. 135–140.
Reference: [6] Janyška, J.: Special bracket versus Jacobi bracket on the classical phase space of general relativistic test particle.Int. J. Geom. Methods Mod. Phys. 11 (2014), 31pp., 1460020. MR 3249642, 10.1142/S0219887814600202
Reference: [7] Janyška, J., Modugno, M.: Classical particle phase space in general relativity.Differential Geometry and Applications, Proc. Conf., Aug. 28 – Sept. 1, 1995, Brno, Czech Republic, Masaryk University, Brno, 1996, pp. 573–602. Zbl 0862.53024, MR 1406377
Reference: [8] Janyška, J., Modugno, M.: Geometric structures of the classical general relativistic phase space.Int. J. Geom. Methods Mod. Phys. 5 (2008), 699–754. Zbl 1160.53008, MR 2445392, 10.1142/S021988780800303X
Reference: [9] Janyška, J., Modugno, M.: Generalized geometrical structures of odd dimensional manifolds.J. Math. Pures Appl. 9 (2009), 211–232. Zbl 1163.53051, MR 2498755, 10.1016/j.matpur.2008.09.007
Reference: [10] Janyška, J., Modugno, M., Vitolo, R.: An algebraic approach to physical scales.Acta Appl. Math. 110 (2010), 1249–1276. Zbl 1208.15021, MR 2639169, 10.1007/s10440-009-9505-6
Reference: [11] Janyška, J., Vitolo, R.: On the characterization of infinitesimal symmetries of the relativistic phase space.J. Phys. A: Math. Theor. 45 (2012), 28pp., 485205. MR 2998421, 10.1088/1751-8113/45/48/485205
Reference: [12] Libermann, P., Marle, Ch.M.: Symplectic Geometry and Analytical Mechanics.Reidel Publ., Dordrecht, 1987. Zbl 0643.53002, MR 0882548
Reference: [13] Lichnerowicz, A.: Les varietés de Jacobi et leurs algèbres de Lie associées.J. Math. Pures Appl. 57 (1978), 453–488. Zbl 0407.53025, MR 0524629
Reference: [14] Manno, G., Vitolo, R.: Relativistic mechanics, contact manifolds and symmetries.Note Mat. 23 (2004/2005), 157–171. MR 2141115
Reference: [15] Michor, P.W., Dubois-Violette, M.: A common generalization of the Frölicher–Nijenhuis bracket and the Schouten bracket for symmetric multivector fields.Indagationes Math. N.S. 6 (1995), 51–66. Zbl 0844.58002, MR 1324437, 10.1016/0019-3577(95)98200-U
Reference: [16] Olver, P.: Applications of Lie groups to differential equations.Graduate Texts in Mathematics, vol. 107, Springer, 1986. Zbl 0588.22001, MR 0836734, 10.1007/978-1-4684-0274-2_2
Reference: [17] Schouten, J.A.: Ueber Differentialkomitanten zweier kontravarianter Grössen.Nederl. Akad. Wetensch., Proc. 43 (1940), 1160–1170. MR 0003326
Reference: [18] Sommers, P.: On Killing tensors and constant of motions.J. Math. Phys. 14 (1973), 787–790. MR 0329558, 10.1063/1.1666395
Reference: [19] Vaisman, I.: Lectures on the Geometry of Poisson Manifolds.Birkhäuser Verlag, Basel-Boston-Berlin, 1994. Zbl 0810.53019, MR 1269545
Reference: [20] Vinogradov, A.M.: An informal introduction to the geometry of jet spaces.Rend. Seminari Fac. Sci. Univ. Cagliari 48 (1988), 301–333. MR 1122861
Reference: [21] Vitolo, R.: Quantum structures in Einstein general relativity.Lett. Math. Phys. 51 (2000), 119–133. Zbl 0977.83009, MR 1774641, 10.1023/A:1007624902983
Reference: [22] Woodhouse, N.M.J.: Killing tensors and the separation of the Hamilton-Jacobi equation.Commun. Math. Phys. 44 (1975), 9–38. Zbl 0309.58012, MR 0406368, 10.1007/BF01609055
.

Files

Files Size Format View
ArchMathRetro_050-2014-5_6.pdf 556.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo