Previous |  Up |  Next

Article

Title: On $F^\varepsilon _2$-planar mappings of (pseudo-) Riemannian manifolds (English)
Author: Hinterleitner, Irena
Author: Mikeš, Josef
Author: Peška, Patrik
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 50
Issue: 5
Year: 2014
Pages: 287-295
Summary lang: English
.
Category: math
.
Summary: We study special $F$-planar mappings between two $n$-dimensional (pseudo-) Riemannian manifolds. In 2003 Topalov introduced $PQ^{\varepsilon }$-projectivity of Riemannian metrics, $\varepsilon \ne 1,1+n$. Later these mappings were studied by Matveev and Rosemann. They found that for $\varepsilon =0$ they are projective. We show that $PQ^{\varepsilon }$-projective equivalence corresponds to a special case of $F$-planar mapping studied by Mikeš and Sinyukov (1983) and ${F_2}$-planar mappings (Mikeš, 1994), with $F=Q$. Moreover, the tensor $P$ is derived from the tensor $Q$ and the non-zero number $\varepsilon $. For this reason we suggest to rename $PQ^{\varepsilon }$ as ${F_2^{\varepsilon }}$. We use earlier results derived for ${F}$- and ${F_2}$-planar mappings and find new results. For these mappings we find the fundamental partial differential equations in closed linear Cauchy type form and we obtain new results for initial conditions. (English)
Keyword: $F^\varepsilon _2$-planar mapping
Keyword: $PQ^\varepsilon $-projective equivalence
Keyword: $F$-planar mapping
Keyword: fundamental equation
Keyword: (pseudo-) Riemannian manifold
MSC: 53B20
MSC: 53B30
MSC: 53B35
MSC: 53B50
idZBL: Zbl 06487013
idMR: MR3303778
DOI: 10.5817/AM2014-5-287
.
Date available: 2015-01-07T14:56:26Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144071
.
Reference: [1] Chudá, H., Shiha, M.: Conformal holomorphically projective mappings satisfying a certain initial condition.Miskolc Math. Notes 14 (2) (2013), 569–574. Zbl 1299.53037, MR 3144093
Reference: [2] Hinterleitner, I.: On holomorphically projective mappings of e-Kähler manifolds.Arch. Mat. (Brno) 48 (2012), 333–338. Zbl 1289.53038, MR 3007616, 10.5817/AM2012-5-333
Reference: [3] Hinterleitner, I., Mikeš, J.: On $F$-planar mappings of spaces with affine connections.Note Mat. 27 (2007), 111–118. MR 2367758
Reference: [4] Hinterleitner, I., Mikeš, J.: Fundamental equations of geodesic mappings and their generalizations.J. Math. Sci. 174 (5) (2011), 537–554. 10.1007/s10958-011-0316-8
Reference: [5] Hinterleitner, I., Mikeš, J.: Projective equivalence and spaces with equi-affine connection.J. Math. Sci. 177 (2011), 546–550, transl. from Fundam. Prikl. Mat. 16 (2010), 47–54. MR 2786490, 10.1007/s10958-011-0479-3
Reference: [6] Hinterleitner, I., Mikeš, J.: Geodesic Mappings and Einstein Spaces.Geometric Methods in Physics, Birkhäuser Basel, 2013, arXiv: 1201.2827v1 [math.DG], 2012. Zbl 1268.53049, MR 3364052
Reference: [7] Hinterleitner, I., Mikeš, J.: On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds.Arch. Math. (Brno) 49 (5) (2013), 295–302. MR 3159328, 10.5817/AM2013-5-295
Reference: [8] Hinterleitner, I., Mikeš, J., Stránská, J.: Infinitesimal $F$-planar transformations.Russ. Math. 52 (2008), 13–18, transl. from Izv. Vyssh. Uchebn. Zaved., Mat. (2008), 16–22. MR 2445169, 10.3103/S1066369X08040026
Reference: [9] Hrdina, J.: Almost complex projective structures and their morphisms.Arch. Mat. (Brno) 45 (2009), 255–264. Zbl 1212.53022, MR 2591680
Reference: [10] Hrdina, J., Slovák, J.: Generalized planar curves and quaternionic geometry.Ann. Global Anal. Geom. 29 (4) (2006), 349–360. MR 2251428, 10.1007/s10455-006-9023-y
Reference: [11] Hrdina, J., Slovák, J.: Morphisms of almost product projective geometries.Proc. 10th Int. Conf. on Diff. Geom. and its Appl., DGA 2007, Olomouc. Hackensack, NJ: World Sci., 2008, pp. 253–261. MR 2462798
Reference: [12] Hrdina, J., Vašík, P.: Generalized geodesics on almost Cliffordian geometries.Balkan J. Geom. Appl. 17 (1) (2012), 41–48. Zbl 1284.53031, MR 2911954
Reference: [13] Jukl, M., Juklová, L., Mikeš, J.: Some results on traceless decomposition of tensors.J. Math. Sci. (New York) 174 (2011), 627–640. 10.1007/s10958-011-0321-y
Reference: [14] Lami, R.J.K. al, Škodová, M., Mikeš, J.: On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces.Arch. Math. (Brno) 42 (5) (2006), 291–299. Zbl 1164.53317, MR 2322415
Reference: [15] Levi-Civita, T.: Sulle transformationi delle equazioni dinamiche.Ann. Mat. Milano 24 Ser. 2 (1886), 255–300.
Reference: [16] Matveev, V., Rosemann, S.: Two remarks on $PQ^{\varepsilon }$-projectivity of Riemanninan metrics.Glasgow Math. J. 55 (1) (2013), 131–138. MR 3001335, 10.1017/S0017089512000390
Reference: [17] Mikeš, J.: On holomorphically projective mappings of Kählerian spaces.Ukr. Geom. Sb., Kharkov 23 (1980), 90–98. Zbl 0463.53013
Reference: [18] Mikeš, J.: Special $F$-planar mappings of affinely connected spaces onto Riemannian spaces.Mosc. Univ. Math. Bull. 49 (1994), 15–21, translation from Vestn. Mosk. Univ., Ser. 1 (1994), 18–24. Zbl 0896.53035, MR 1315721
Reference: [19] Mikeš, J.: Holomorphically projective mappings and their generalizations.J. Math. Sci. (New York) 89 (1998), 1334–1353. MR 1619720, 10.1007/BF02414875
Reference: [20] Mikeš, J., Chudá, H., Hinterleitner, I.: Conformal holomorphically projective mappings of almost Hermitian manifolds with a certain initial condition.Int. J. Geom. Methods in Modern Phys. 11 (5) (2014), Article Number 1450044. MR 3208853, 10.1142/S0219887814500443
Reference: [21] Mikeš, J., Pokorná, O.: On holomorphically projective mappings onto almost Hermitian spaces.8th Int. Conf. Opava, 2001, pp. 43–48. Zbl 1076.53506, MR 1978761
Reference: [22] Mikeš, J., Pokorná, O.: On holomorphically projective mappings onto Kählerian spaces.Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 181–186. MR 1972433
Reference: [23] Mikeš, J., Shiha, M., Vanžurová, A.: Invariant objects by holomorphically projective mappings of Kähler space.8th Int. Conf. APLIMAT 2009: 8th Int. Conf. Proc., 2009, pp. 439–444.
Reference: [24] Mikeš, J., Sinyukov, N.S.: On quasiplanar mappings of space of affine connection.Sov. Math. (1983), 63–70, translation from Izv. Vyssh. Uchebn. Zaved., Mat. (1983), 55–61. MR 0694014
Reference: [25] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and some Generalizations.Palacky University Press, Olomouc, 2009. MR 2682926
Reference: [26] Otsuki, T., Tashiro, Y.: On curves in Kaehlerian spaces.Math. J. Okayama Univ. 4 (1954), 57–78. Zbl 0057.14101, MR 0066024
Reference: [27] Petrov, A.Z.: Simulation of physical fields.Gravitatsiya i Teor. Otnositenosti 4–5 (1968), 7–21. MR 0285249
Reference: [28] Prvanović, M.: Holomorphically projective transformations in a locally product space.Math. Balkanica (N.S.) 1 (1971), 195–213. MR 0288710
Reference: [29] Sinyukov, N.S.: Geodesic Mappings of Riemannian Spaces.Moscow: Nauka, 1979, 256pp. Zbl 0637.53020, MR 0552022
Reference: [30] Škodová, M., Mikeš, J., Pokorná, O.: On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces.Rend. Circ. Mat. Palermo (2) Suppl., vol. 75, 2005, pp. 309–316. Zbl 1109.53019, MR 2152369
Reference: [31] Stanković, M.S., Zlatanović, M.L., Velimirović, L.S.: Equitorsion holomorphically projective mappings of generalized Kählerian space of the first kind.Czechoslovak Math. J. 60 (2010), 635–653. Zbl 1224.53031, MR 2672406, 10.1007/s10587-010-0059-6
Reference: [32] Topalov, P.: Geodesic compatibility and integrability of geodesic flows.J. Math. Phys. 44 (2) (2003), 913–929. Zbl 1061.37042, MR 1953103, 10.1063/1.1526939
Reference: [33] Yano, K.: Differential geometry on complex and almost complex spaces.vol. XII, Pergamon Press, Oxford-London-New York-Paris-Frankfurt, 1965, 323pp. Zbl 0127.12405, MR 0187181
.

Files

Files Size Format View
ArchMathRetro_050-2014-5_5.pdf 505.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo