Previous |  Up |  Next

Article

Title: On a general structure of the bivariate FGM type distributions (English)
Author: Mirhosseini, Sayed Mohsen
Author: Amini, Mohammad
Author: Dolati, Ali
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 1
Year: 2015
Pages: 91-108
Summary lang: English
.
Category: math
.
Summary: In this paper, we study a general structure for the so-called Farlie-Gumbel-Morgenstern (FGM) family of bivariate distributions. Through examples we show how to use the proposed structure to study dependence properties of the FGM type distributions by a general approach. (English)
Keyword: copula
Keyword: dependence
Keyword: FGM family
Keyword: measure of association
MSC: 62E15
MSC: 62H10
idZBL: Zbl 06391463
idMR: MR3299874
DOI: 10.1007/s10492-015-0086-6
.
Date available: 2015-01-09T14:02:29Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144095
.
Reference: [1] Amblard, C., Girard, S.: Symmetry and dependence properties within a semiparametric family of bivariate copulas.J. Nonparametric Stat. 14 (2002), 715-727. Zbl 1019.62046, MR 1941711, 10.1080/10485250215322
Reference: [2] Amblard, C., Girard, S.: A new extension of bivariate FGM copulas.Metrika 70 (2009), 1-17. MR 2506497, 10.1007/s00184-008-0174-7
Reference: [3] Bairamov, I., Kotz, S.: Dependence structure and symmetry of Huang-Kotz FGM distributions and their extensions.Metrika 56 (2002), 55-72. MR 1922211, 10.1007/s001840100158
Reference: [4] Bairamov, I., Kotz, S., Bekçi, M.: New generalized Farlie-Gumbel-Morgenstern distributions and concomitants of order statistics.J. Appl. Stat. 28 (2001), 521-536. Zbl 0991.62032, MR 1836732, 10.1080/02664760120047861
Reference: [5] Bairamov, I., Kotz, S., Gebizlioglu, O. L.: The Sarmanov family and its generalization.S. Afr. Stat. J. 35 (2001), 205-224. Zbl 1009.62011, MR 1910896
Reference: [6] Baker, R.: An order-statistics-based method for constructing multivariate distributions with fixed marginals.J. Multivariate Anal. 99 (2008), 2312-2327. Zbl 1151.62045, MR 2463391, 10.1016/j.jmva.2008.02.019
Reference: [7] Church, J. D., Harris, B.: The estimation of reliability from stress-strength relationships.Technometrics 12 (1970), 49-54. Zbl 0195.20001, 10.1080/00401706.1970.10488633
Reference: [8] David, H. A., Nagaraja, H. N.: Order Statistics.Wiley Series in Probability and Statistics John Wiley & Sons, Chichester (2003). Zbl 1053.62060, MR 1994955
Reference: [9] Drouet-Mari, D., Kotz, S.: Correlation and Dependence.Imperial College Press London (2001). Zbl 0977.62004, MR 1835042
Reference: [10] Farlie, D. J. G.: The performance of some correlation coefficients for a general bivariate distribution.Biometrika 47 (1960), 307-323. Zbl 0102.14903, MR 0119312, 10.1093/biomet/47.3-4.307
Reference: [11] Fisher, M., Klein, I.: Constructing generalized FGM copulas by means of certain univariate distributions.Metrika 65 (2007), 243-260. MR 2288062, 10.1007/s00184-006-0075-6
Reference: [12] Gumbel, E. J.: Bivariate exponential distributions.J. Am. Stat. Assoc. 55 (1960), 698-707. Zbl 0099.14501, MR 0116403, 10.1080/01621459.1960.10483368
Reference: [13] Han, K. H.: A new family of negative quadrant dependent bivariate distributions with continuous marginals.Journal of the Chungcheong Mathematical Society 24 (2011), 795-805.
Reference: [14] Hlubinka, D., Kotz, S.: The generalized FGM distribution and its application to stereology of extremes.Appl. Math., Praha 55 (2010), 495-512. Zbl 1223.62080, MR 2737716, 10.1007/s10492-010-0020-x
Reference: [15] Huang, J. S., Kotz, S.: Modifications of the Farlie-Gumbel-Morgenstern distributions. A tough hill to climb.Metrika 49 (1999), 135-145. Zbl 1093.62514, MR 1729905, 10.1007/s001840050030
Reference: [16] Lai, C. D., Xie, M.: A new family of positive quadrant dependent bivariate distributions.Stat. Probab. Lett. 46 (2000), 359-364. Zbl 0943.62043, MR 1743993, 10.1016/S0167-7152(99)00122-4
Reference: [17] Mirhoseini, S. M., Dolati, A., Amini, M.: On a class of distributions generated by stochastic mixture of the extreme order statistics of a sample of size two.J. Stat. Theory Appl. 10 (2011), 455-468. MR 2868281
Reference: [18] Morgenstern, D.: Einfache Beispiele zweidimensionaler Verteilungen.German Mitt.-Bl. Math. Statistik 8 (1956), 234-235. Zbl 0070.36202, MR 0081575
Reference: [19] Nelsen, R. B.: An Introduction to Copulas.Springer Series in Statistics Springer, New York (2006). Zbl 1152.62030, MR 2197664
Reference: [20] Rodríguez-Lallena, J. A., Úbeda-Flores, M.: A new class of bivariate copulas.Stat. Probab. Lett. 66 (2004), 315-325. Zbl 1102.62054, MR 2045476, 10.1016/j.spl.2003.09.010
Reference: [21] Sklar, M.: Fonctions de répartition à $n$ dimensions et leurs marges.Publ. Inst. Stat. Univ. Paris French 8 (1960), 229-231. MR 0125600
.

Files

Files Size Format View
AplMat_60-2015-1_5.pdf 287.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo