Previous |  Up |  Next

Article

Title: Existence of solutions for two types of generalized versions of the Cahn-Hilliard equation (English)
Author: Heida, Martin
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 1
Year: 2015
Pages: 51-90
Summary lang: English
.
Category: math
.
Summary: We show existence of solutions to two types of generalized anisotropic Cahn-Hilliard problems: In the first case, we assume the mobility to be dependent on the concentration and its gradient, where the system is supplied with dynamic boundary conditions. In the second case, we deal with classical no-flux boundary conditions where the mobility depends on concentration $u$, gradient of concentration $\nabla u$ and the chemical potential $\Delta u-s'(u)$. The existence is shown using a newly developed generalization of gradient flows by the author and the theory of Young measures. (English)
Keyword: Cahn-Hilliard
Keyword: anisotropic behavior
Keyword: gradient flow
Keyword: curve of maximal slope
Keyword: entropy
MSC: 35D30
MSC: 35K57
MSC: 47J35
MSC: 80A22
idZBL: Zbl 06391462
idMR: MR3299873
DOI: 10.1007/s10492-015-0085-7
.
Date available: 2015-01-09T14:00:24Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144094
.
Reference: [1] Abels, H., Wilke, M.: Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 67 3176-3193 (2007). Zbl 1121.35018, MR 2347608, 10.1016/j.na.2006.10.002
Reference: [2] Adams, R. A.: Sobolev Spaces.Pure and Applied Mathematics 65. A Series of Monographs and Textbooks Academic Press, New York (1975). Zbl 0314.46030, MR 0450957
Reference: [3] Brokate, M., Kenmochi, N., Müller, I., Rodriguez, J. F., Verdi, C.: Phase transitions and hysteresis.Lectures Given at the Third C.I.M.E., 1993, Montecatini Terme, Italy Lecture Notes in Mathematics 1584 Springer, Berlin (1994), A. Visintin. MR 1321829
Reference: [4] Buscaglia, G. C., Ausas, R. F.: Variational formulations for surface tension, capillarity and wetting.Comput. Methods Appl. Mech. Eng. 200 3011-3025 (2011). Zbl 1230.76047, MR 2844033, 10.1016/j.cma.2011.06.002
Reference: [5] Cahn, J. W., Elliott, C. M., Novick-Cohen, A.: The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature.Eur. J. Appl. Math. 7 287-301 (1996). Zbl 0861.35039, MR 1401172, 10.1017/S0956792500002369
Reference: [6] Changchun, L.: Cahn-Hilliard equation with terms of lower order and non-constant mobility.Electron. J. Qual. Theory Differ. Equ. 2003 (2003), 9 pp. (electronic only). Zbl 1032.35076, MR 1986908
Reference: [7] Passo, R. Dal, Giacomelli, L., Novick-Cohen, A.: Existence for an Allen-Cahn/Cahn-Hilliard system with degenerate mobility.Interfaces Free Bound. 1 199-226 (1999). MR 1867131, 10.4171/IFB/9
Reference: [8] Debussche, A., Dettori, L.: On the Cahn-Hilliard equation with a logarithmic free energy.Nonlinear Anal., Theory Methods Appl. 24 1491-1514 (1995). Zbl 0831.35088, MR 1327930, 10.1016/0362-546X(94)00205-V
Reference: [9] Dellacherie, C., Meyer, P.-A.: Probabilities and Potential.North-Holland Mathematics Studies 29 North-Holland Publishing Company, Amsterdam (1978). Zbl 0494.60001, MR 0521810
Reference: [10] Elliott, C. M., Garcke, H.: On the Cahn-Hilliard equation with degenerate mobility.SIAM J. Math. Anal. 27 404-423 (1996). Zbl 0856.35071, MR 1377481, 10.1137/S0036141094267662
Reference: [11] Elliott, C. M., Zheng, S.: On the Cahn-Hilliard equation.Arch. Ration. Mech. Anal. 96 339-357 (1986). Zbl 0624.35048, MR 0855754, 10.1007/BF00251803
Reference: [12] Gal, C. G.: Global well-posedness for the non-isothermal Cahn-Hilliard equation with dynamic boundary conditions.Adv. Differ. Equ. 12 1241-1274 (2007). Zbl 1162.35386, MR 2372239
Reference: [13] Gilardi, G., Miranville, A., Schimperna, G.: On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions.Commun. Pure Appl. Anal. 8 881-912 (2009). Zbl 1172.35417, MR 2476663, 10.3934/cpaa.2009.8.881
Reference: [14] Grasselli, M., Miranville, A., Rossi, R., Schimperna, G.: Analysis of the Cahn-Hilliard equation with a chemical potential dependent mobility.Commun. Partial Differ. Equations 36 1193-1238 (2011). Zbl 1241.35024, MR 2810586, 10.1080/03605302.2010.543945
Reference: [15] Heida, M.: Modeling Multiphase Flow in Porous Media with an Application to Permafrost Soil.Univ. Heidelberg, Naturwissenschaftlich-Mathematische Gesamtfakultät, Heidelberg; Charles Univ. Praha, Faculty of Mathematics and Physics (PhD Thesis), Praha (2011).
Reference: [16] Heida, M.: On the derivation of thermodynamically consistent boundary conditions for the Cahn-Hilliard-Navier-Stokes system.Internat. J. Engrg. Sci. 62 126-156 (2013). MR 2996309, 10.1016/j.ijengsci.2012.09.005
Reference: [17] Heida, M.: On systems of Cahn-Hilliard and Allen-Cahn equations considered as gradient flows in Hilbert spaces.J. Math. Anal. Appl. 423 410-455 (2015). MR 3273188, 10.1016/j.jmaa.2014.09.046
Reference: [18] Ito, A., Kenmochi, N., Niezgódka, M.: Large-time behaviour of non-isothermal models for phase separation.Proc. Conf. Elliptic and Parabolic Problems, 1994 Pitman Res. Notes Math. Ser. 325 Longman Scientific & Technical, Harlow 120-151 (1995). Zbl 0838.35053, MR 1416579
Reference: [19] Lisini, S., Matthes, D., Savaré, G.: Cahn-Hilliard and thin film equations with nonlinear mobility as gradient flows in weighted-Wasserstein metrics.J. Differ. Equations 253 814-850 (2012). Zbl 1248.35095, MR 2921215, 10.1016/j.jde.2012.04.004
Reference: [20] Liu, C.: On the convective Cahn-Hilliard equation with degenerate mobility.J. Math. Anal. Appl. 344 124-144 (2008). Zbl 1158.35077, MR 2416296, 10.1016/j.jmaa.2008.02.027
Reference: [21] Liu, C., Qi, Y., Yin, J.: Regularity of solutions of the Cahn-Hilliard equation with non-constant mobility.Acta Math. Sin., Engl. Ser. 22 1139-1150 (2006). Zbl 1106.35011, MR 2245245, 10.1007/s10114-005-0711-5
Reference: [22] Lowengrub, J. S., Rätz, A., Voigt, A.: Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission.Phys. Rev. E 79 (2009), 031926, 13 pp. MR 2497179, 10.1103/PhysRevE.79.031926
Reference: [23] Mercker, M.: Models, numerics and simulations of deforming biological surfaces.Univ. Heidelberg, Naturwissenschaftlich-Mathematische Gesamtfakultät (PhD Thesis), Heidelberg (2012). Zbl 1304.92023
Reference: [24] Mercker, M., Marciniak-Czochra, A., Richter, T., Hartmann, D.: Modeling and computing of deformation dynamics of inhomogeneous biological surfaces.SIAM J. Appl. Math. 73 1768-1792 (2013). Zbl 1282.74015, MR 3095724, 10.1137/120885553
Reference: [25] Mercker, M., Richter, T., Hartmann, D.: Sorting mechanisms and communication in phase separating coupled monolayers.J. Phys. Chem. B 115 11739-11745, DOI: 10.1021/jp204127g (2011). 10.1021/jp204127g
Reference: [26] Miranville, A.: Existence of solutions for Cahn-Hilliard type equations.Discrete Contin. Dyn. Syst. 2003 Suppl. Vol., 630-637 (2003). Zbl 1070.35002, MR 2018168
Reference: [27] Miranville, A., Zelik, S.: Robust exponential attractors for Cahn-Hilliard type equations with singular potentials.Math. Methods Appl. Sci. 27 545-582 (2004). Zbl 1050.35113, MR 2041814, 10.1002/mma.464
Reference: [28] Miranville, A., Zelik, S.: The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions.Discrete Contin. Dyn. Syst. 28 275-310 (2010). Zbl 1203.35046, MR 2629483, 10.3934/dcds.2010.28.275
Reference: [29] Mugnai, L., Röger, M.: The Allen-Cahn action functional in higher dimensions.Interfaces Free Bound. 10 45-78 (2008). Zbl 1288.93096, MR 2383536, 10.4171/IFB/179
Reference: [30] Mugnai, L., Röger, M.: Convergence of perturbed Allen-Cahn equations to forced mean curvature flow.Indiana Univ. Math. J. 60 41-76 (2011). MR 2952409, 10.1512/iumj.2011.60.3949
Reference: [31] Novick-Cohen, A.: The Cahn-Hilliard equation.Handbook of Differential Equations: Evolutionary Equations. Vol. IV Elsevier/North-Holland, Amsterdam 201-228 (2008). Zbl 1185.35001, MR 2508166
Reference: [32] Novick-Cohen, A.: The Cahn-Hilliard Equation: From Backwards Diffusion to Surface Diffusion.(to appear) in Cambridge University Press. MR 2508166
Reference: [33] Qian, T., Wang, X.-P., Sheng, P.: A variational approach to moving contact line hydrodynamics.J. Fluid Mech. 564 333-360 (2006). Zbl 1178.76296, MR 2261865, 10.1017/S0022112006001935
Reference: [34] Racke, R., Zheng, S.: The Cahn-Hilliard equation with dynamic boundary conditions.Adv. Differ. Equ. 8 83-110 (2003). Zbl 1035.35050, MR 1946559
Reference: [35] Röger, M., Schätzle, R.: On a modified conjecture of De Giorgi.Math. Z. 254 675-714 (2006). Zbl 1126.49010, MR 2253464, 10.1007/s00209-006-0002-6
Reference: [36] Roidos, N., Schrohe, E.: The Cahn-Hilliard equation and the Allen-Cahn equation on manifolds with conical singularities.Commun. Partial Differ. Equations 38 925-943 (2013). Zbl 1272.58013, MR 3046298, 10.1080/03605302.2012.736913
Reference: [37] Rossi, R.: On two classes of generalized viscous Cahn-Hilliard equations.Commun. Pure Appl. Anal. 4 405-430 (2005). Zbl 1078.35058, MR 2149524, 10.3934/cpaa.2005.4.405
Reference: [38] Rossi, R., Savaré, G.: Gradient flows of non convex functionals in Hilbert spaces and applications.ESAIM, Control Optim. Calc. Var. 12 564-614 (2006). Zbl 1116.34048, MR 2224826, 10.1051/cocv:2006013
Reference: [39] Serfaty, S.: Gamma-convergence of gradient flows on Hilbert and metric spaces and applications.Discrete Contin. Dyn. Syst. 31 1427-1451 (2011). Zbl 1239.35015, MR 2836361
Reference: [40] Stefanelli, U.: The Brezis-Ekeland principle for doubly nonlinear equations.SIAM J. Control Optim. 47 1615-1642 (2008). Zbl 1194.35214, MR 2425653, 10.1137/070684574
Reference: [41] Taylor, J. E., Cahn, J. W.: Linking anisotropic sharp and diffuse surface motion laws via gradient flows.J. Stat. Phys. 77 183-197 (1994). Zbl 0844.35044, MR 1300532, 10.1007/BF02186838
Reference: [42] Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis.American Mathematical Society, Providence (2001). Zbl 0981.35001, MR 1846644
Reference: [43] Torabi, S., Lowengrub, J., Voigt, A., Wise, S.: A new phase-field model for strongly anisotropic systems.Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 465 1337-1359 (2009). Zbl 1186.80014, MR 2500806, 10.1098/rspa.2008.0385
Reference: [44] Torabi, S., Wise, S., Lowengrub, J., Rätz, A., Voigt, A.: A new method for simulating strongly anisotropic Cahn-Hilliard equations.Materials Science and Technology-Association for Iron and Steel Technology 3 1432-1444 (2007).
Reference: [45] Wise, S., Kim, J., Lowengrub, J.: Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method.J. Comput. Phys. 226 414-446 (2007). Zbl 1310.82044, MR 2356365, 10.1016/j.jcp.2007.04.020
.

Files

Files Size Format View
AplMat_60-2015-1_4.pdf 447.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo