Title:
|
On a functional equation connected to the distributivity of fuzzy implications over triangular norms and conorms (English) |
Author:
|
Baczyński, Michał |
Author:
|
Szostok, Tomasz |
Author:
|
Niemyska, Wanda |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
50 |
Issue:
|
5 |
Year:
|
2014 |
Pages:
|
679-695 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Distributivity of fuzzy implications over different fuzzy logic connectives have a very important role to play in efficient inferencing in approximate reasoning, especially in fuzzy control systems (see [9, 15] and [4]). Recently in some considerations connected with these distributivity laws, the following functional equation appeared (see [5]) $$ f(\min(x+y,a))=\min(f(x)+f(y),b), $$ where $a,b>0$ and $f\colon[0,a]\to[0,b]$ is an unknown function. In this paper we consider in detail a generalized version of this equation, namely the equation $$ f(m_1(x+y))=m_2(f(x)+f(y)), $$ where $m_1,m_2$ are functions defined on some intervals of ${\mathbb R}$ satisfying additional assumptions. We analyze the cases when $m_2$ is injective and when $m_2$ is not injective. (English) |
Keyword:
|
fuzzy connectives |
Keyword:
|
fuzzy implication |
Keyword:
|
distributivity |
Keyword:
|
functional equations |
MSC:
|
03B52 |
MSC:
|
03E72 |
MSC:
|
39B05 |
MSC:
|
39B22 |
MSC:
|
39B99 |
idZBL:
|
Zbl 06410697 |
idMR:
|
MR3301854 |
DOI:
|
10.14736/kyb-2014-5-0679 |
. |
Date available:
|
2015-01-13T09:22:48Z |
Last updated:
|
2016-01-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144100 |
. |
Reference:
|
[1] Baczyński, M.: On a class of distributive fuzzy implications..Int. J. Uncertain. Fuzziness Knowledge-Based Systems 9 (2001), 229-238. Zbl 1113.03315, MR 1821991, 10.1142/S0218488501000764 |
Reference:
|
[2] Baczyński, M.: On the distributivity of fuzzy implications over continuous and Archimedean triangular conorms..Fuzzy Sets and Systems 161 (2010), 1406-1419. Zbl 1204.03029, MR 2606422 |
Reference:
|
[3] Baczyński, M.: On the distributivity of fuzzy implications over representable uninorms..Fuzzy Sets and Systems 161 (2010), 2256-2275. Zbl 1252.03046, MR 2658032 |
Reference:
|
[4] Baczyński, M., Jayaram, B.: Fuzzy Implications..Studies in Fuzziness and Soft Computing 231, Springer, Berlin Heidelberg 2008. Zbl 1293.03012 |
Reference:
|
[5] Baczyński, M., Jayaram, B.: On the distributivity of fuzzy implications over nilpotent or strict triangular conorms..IEEE Trans. Fuzzy Syst. 17 (2009), 590-603. 10.1109/TFUZZ.2008.924201 |
Reference:
|
[6] Baczyński, M., Qin, F.: Some remarks on the distributive equation of fuzzy implication and the contrapositive symmetry for continuous, Archimedean t-norms..Int. J. Approx. Reason. 54 (2013), 290-296. Zbl 1280.03029, MR 3021572, 10.1016/j.ijar.2012.10.001 |
Reference:
|
[7] Baczyński, M., Szostok, T., Niemyska, W.: On a functional equation related to distributivity of fuzzy implications..In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ IEEE 2013) Hyderabad 2013, pp. 1-5. |
Reference:
|
[8] Balasubramaniam, J., Rao, C. J. M.: On the distributivity of implication operators over T and S norms..IEEE Trans. Fuzzy Syst. 12 (2004), 194-198. 10.1109/TFUZZ.2004.825075 |
Reference:
|
[9] Combs, W. E., Andrews, J. E.: Combinatorial rule explosion eliminated by a fuzzy rule configuration..IEEE Trans. Fuzzy Syst. 6 (1998), 1-11. 10.1109/91.660804 |
Reference:
|
[10] Combs, W. E.: Author's reply..IEEE Trans. Fuzzy Syst. 7 (1999), 371-373. 10.1109/TFUZZ.1999.771094 |
Reference:
|
[11] Combs, W. E.: Author's reply..IEEE Trans. Fuzzy Syst. 7 (1999), 477-478. 10.1109/TFUZZ.1999.784215 |
Reference:
|
[12] Baets, B. De: Fuzzy morphology: A logical approach..In: Uncertainty Analysis in Engineering and Science: Fuzzy Logic, Statistics, and Neural Network Approach (B. M. Ayyub and M. M. Gupta, eds.), Kluwer Academic Publishers, Norwell 1997, pp. 53-68. Zbl 1053.03516 |
Reference:
|
[13] Dick, S., Kandel, A.: Comments on ``Combinatorial rule explosion eliminated by a fuzzy rule configuration"..IEEE Trans. Fuzzy Syst. 7 (1999), 475-477. 10.1109/91.784213 |
Reference:
|
[14] González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: Fuzzy hit-or-miss transform using the fuzzy mathematical morphology based on T-norms..In: Aggregation Functions in Theory and in Practise (H. Bustince et al., eds.), Advances in Intelligent Systems and Computing 228, Springer, Berlin - Heidelberg 2013, pp. 391-403. Zbl 1277.68283 |
Reference:
|
[15] Jayaram, B.: Rule reduction for efficient inferencing in similarity based reasoning..Int. J. Approx. Reason. 48 (2008), 156-173. Zbl 1184.68511, MR 2420665, 10.1016/j.ijar.2007.07.009 |
Reference:
|
[16] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer Academic Publishers, Dordrecht 2000. Zbl 1087.20041, MR 1790096 |
Reference:
|
[17] Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality..Państwowe Wydawnictwo Naukowe (Polish Scientific Publishers) and Uniwersytet Śląski, Warszawa-Kraków-Katowice 1985. Zbl 1221.39041, MR 0788497 |
Reference:
|
[18] Ling, C. H.: Representation of associative functions..Publ. Math. Debrecen 12 (1965), 189-212. Zbl 0137.26401, MR 0190575 |
Reference:
|
[19] Mendel, J. M., Liang, Q.: Comments on ``Combinatorial rule explosion eliminated by a fuzzy rule configuration"..IEEE Trans. Fuzzy Syst. 7 (1999), 369-371. 10.1109/91.771093 |
Reference:
|
[20] Qin, F., Baczyński, M., Xie, A.: Distributive equations of implications based on continuous triangular norms (I)..IEEE Trans. Fuzzy Syst. 20 (2012), 153-167. 10.1109/TFUZZ.2011.2171188 |
Reference:
|
[21] Qin, F., Yang, L.: Distributive equations of implications based on nilpotent triangular norms..Int. J. Approx. Reason. 51 (2010), 984-992. Zbl 1226.03036, MR 2719614, 10.1016/j.ijar.2010.07.005 |
Reference:
|
[22] Ruiz-Aguilera, D., Torrens, J.: Distributivity of strong implications over conjunctive and disjunctive uninorms..Kybernetika 42 (2006), 319-336. Zbl 1249.03030, MR 2253392 |
Reference:
|
[23] Ruiz-Aguilera, D., Torrens, J.: Distributivity of residual implications over conjunctive and disjunctive uninorms..Fuzzy Sets and Systems 158 (2007), 23-37. Zbl 1114.03022, MR 2287424 |
Reference:
|
[24] Trillas, E., Alsina, C.: On the law $[(p\wedge q)\to r]=[(p\to r)\vee(q\to r)]$ in fuzzy logic..IEEE Trans. Fuzzy Syst. 10 (2002), 84-88. |
. |