Previous |  Up |  Next

Article

Title: On a functional equation connected to the distributivity of fuzzy implications over triangular norms and conorms (English)
Author: Baczyński, Michał
Author: Szostok, Tomasz
Author: Niemyska, Wanda
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 5
Year: 2014
Pages: 679-695
Summary lang: English
.
Category: math
.
Summary: Distributivity of fuzzy implications over different fuzzy logic connectives have a very important role to play in efficient inferencing in approximate reasoning, especially in fuzzy control systems (see [9, 15] and [4]). Recently in some considerations connected with these distributivity laws, the following functional equation appeared (see [5]) $$ f(\min(x+y,a))=\min(f(x)+f(y),b), $$ where $a,b>0$ and $f\colon[0,a]\to[0,b]$ is an unknown function. In this paper we consider in detail a generalized version of this equation, namely the equation $$ f(m_1(x+y))=m_2(f(x)+f(y)), $$ where $m_1,m_2$ are functions defined on some intervals of ${\mathbb R}$ satisfying additional assumptions. We analyze the cases when $m_2$ is injective and when $m_2$ is not injective. (English)
Keyword: fuzzy connectives
Keyword: fuzzy implication
Keyword: distributivity
Keyword: functional equations
MSC: 03B52
MSC: 03E72
MSC: 39B05
MSC: 39B22
MSC: 39B99
idZBL: Zbl 06410697
idMR: MR3301854
DOI: 10.14736/kyb-2014-5-0679
.
Date available: 2015-01-13T09:22:48Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144100
.
Reference: [1] Baczyński, M.: On a class of distributive fuzzy implications..Int. J. Uncertain. Fuzziness Knowledge-Based Systems 9 (2001), 229-238. Zbl 1113.03315, MR 1821991, 10.1142/S0218488501000764
Reference: [2] Baczyński, M.: On the distributivity of fuzzy implications over continuous and Archimedean triangular conorms..Fuzzy Sets and Systems 161 (2010), 1406-1419. Zbl 1204.03029, MR 2606422
Reference: [3] Baczyński, M.: On the distributivity of fuzzy implications over representable uninorms..Fuzzy Sets and Systems 161 (2010), 2256-2275. Zbl 1252.03046, MR 2658032
Reference: [4] Baczyński, M., Jayaram, B.: Fuzzy Implications..Studies in Fuzziness and Soft Computing 231, Springer, Berlin Heidelberg 2008. Zbl 1293.03012
Reference: [5] Baczyński, M., Jayaram, B.: On the distributivity of fuzzy implications over nilpotent or strict triangular conorms..IEEE Trans. Fuzzy Syst. 17 (2009), 590-603. 10.1109/TFUZZ.2008.924201
Reference: [6] Baczyński, M., Qin, F.: Some remarks on the distributive equation of fuzzy implication and the contrapositive symmetry for continuous, Archimedean t-norms..Int. J. Approx. Reason. 54 (2013), 290-296. Zbl 1280.03029, MR 3021572, 10.1016/j.ijar.2012.10.001
Reference: [7] Baczyński, M., Szostok, T., Niemyska, W.: On a functional equation related to distributivity of fuzzy implications..In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ IEEE 2013) Hyderabad 2013, pp. 1-5.
Reference: [8] Balasubramaniam, J., Rao, C. J. M.: On the distributivity of implication operators over T and S norms..IEEE Trans. Fuzzy Syst. 12 (2004), 194-198. 10.1109/TFUZZ.2004.825075
Reference: [9] Combs, W. E., Andrews, J. E.: Combinatorial rule explosion eliminated by a fuzzy rule configuration..IEEE Trans. Fuzzy Syst. 6 (1998), 1-11. 10.1109/91.660804
Reference: [10] Combs, W. E.: Author's reply..IEEE Trans. Fuzzy Syst. 7 (1999), 371-373. 10.1109/TFUZZ.1999.771094
Reference: [11] Combs, W. E.: Author's reply..IEEE Trans. Fuzzy Syst. 7 (1999), 477-478. 10.1109/TFUZZ.1999.784215
Reference: [12] Baets, B. De: Fuzzy morphology: A logical approach..In: Uncertainty Analysis in Engineering and Science: Fuzzy Logic, Statistics, and Neural Network Approach (B. M. Ayyub and M. M. Gupta, eds.), Kluwer Academic Publishers, Norwell 1997, pp. 53-68. Zbl 1053.03516
Reference: [13] Dick, S., Kandel, A.: Comments on ``Combinatorial rule explosion eliminated by a fuzzy rule configuration"..IEEE Trans. Fuzzy Syst. 7 (1999), 475-477. 10.1109/91.784213
Reference: [14] González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: Fuzzy hit-or-miss transform using the fuzzy mathematical morphology based on T-norms..In: Aggregation Functions in Theory and in Practise (H. Bustince et al., eds.), Advances in Intelligent Systems and Computing 228, Springer, Berlin - Heidelberg 2013, pp. 391-403. Zbl 1277.68283
Reference: [15] Jayaram, B.: Rule reduction for efficient inferencing in similarity based reasoning..Int. J. Approx. Reason. 48 (2008), 156-173. Zbl 1184.68511, MR 2420665, 10.1016/j.ijar.2007.07.009
Reference: [16] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer Academic Publishers, Dordrecht 2000. Zbl 1087.20041, MR 1790096
Reference: [17] Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality..Państwowe Wydawnictwo Naukowe (Polish Scientific Publishers) and Uniwersytet Śląski, Warszawa-Kraków-Katowice 1985. Zbl 1221.39041, MR 0788497
Reference: [18] Ling, C. H.: Representation of associative functions..Publ. Math. Debrecen 12 (1965), 189-212. Zbl 0137.26401, MR 0190575
Reference: [19] Mendel, J. M., Liang, Q.: Comments on ``Combinatorial rule explosion eliminated by a fuzzy rule configuration"..IEEE Trans. Fuzzy Syst. 7 (1999), 369-371. 10.1109/91.771093
Reference: [20] Qin, F., Baczyński, M., Xie, A.: Distributive equations of implications based on continuous triangular norms (I)..IEEE Trans. Fuzzy Syst. 20 (2012), 153-167. 10.1109/TFUZZ.2011.2171188
Reference: [21] Qin, F., Yang, L.: Distributive equations of implications based on nilpotent triangular norms..Int. J. Approx. Reason. 51 (2010), 984-992. Zbl 1226.03036, MR 2719614, 10.1016/j.ijar.2010.07.005
Reference: [22] Ruiz-Aguilera, D., Torrens, J.: Distributivity of strong implications over conjunctive and disjunctive uninorms..Kybernetika 42 (2006), 319-336. Zbl 1249.03030, MR 2253392
Reference: [23] Ruiz-Aguilera, D., Torrens, J.: Distributivity of residual implications over conjunctive and disjunctive uninorms..Fuzzy Sets and Systems 158 (2007), 23-37. Zbl 1114.03022, MR 2287424
Reference: [24] Trillas, E., Alsina, C.: On the law $[(p\wedge q)\to r]=[(p\to r)\vee(q\to r)]$ in fuzzy logic..IEEE Trans. Fuzzy Syst. 10 (2002), 84-88.
.

Files

Files Size Format View
Kybernetika_50-2014-5_4.pdf 551.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo