Previous |  Up |  Next

Article

Title: On the hyperspace of bounded closed sets under a generalized Hausdorff stationary fuzzy metric (English)
Author: Qiu, Dong
Author: Lu, Chongxia
Author: Deng, Shuai
Author: Wang, Liang
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 5
Year: 2014
Pages: 758-773
Summary lang: English
.
Category: math
.
Summary: In this paper, we generalize the classical Hausdorff metric with t-norms and obtain its basic properties. Furthermore, for a given stationary fuzzy metric space with a t-norm without zero divisors, we propose a method for constructing a generalized Hausdorff fuzzy metric on the set of the nonempty bounded closed subsets. Finally we discuss several important properties as completeness, completion and precompactness. (English)
Keyword: Hausdorff metric
Keyword: hyperspace
Keyword: triangular norms
Keyword: stationary fuzzy metric
MSC: 03E72
MSC: 46S40
MSC: 54A40
MSC: 54B20
idZBL: Zbl 06410702
idMR: MR3301859
DOI: 10.14736/kyb-2014-5-0758
.
Date available: 2015-01-13T09:34:29Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144105
.
Reference: [1] Adibi, H., Cho, Y. J., O'Regan, D., Saadati, R.: Common fixed point theorems in $L$-fuzzy metric spaces..Appl. Math. Comput. 182 (2006), 820-828. MR 2292091, 10.1016/j.amc.2006.04.045
Reference: [2] Aubin, J. P., Ekeland, I.: Applied Nonlinear Analysis..Wiley, New York 1984. Zbl 1115.47049, MR 0749753
Reference: [3] Azé, D., Corvellec, J. N., Lucchetti, R. E.: Variational pairs and applications to stability in nonsmooth analysis..Nonlinear Anal. Theory Methods Appl. 49 (2002), 643-670. Zbl 1035.49014, MR 1894302
Reference: [4] Beer, G.: Topologies on Closed and Closed Convex Sets..Kluwer Academic Publishers, Dordrecht 1993. Zbl 0792.54008, MR 1269778
Reference: [5] Chang, S. S., Cho, Y. J., Lee, B. S., Jung, J. S., Kang, S. M.: Coincidence point and minimization theorems in fuzzy metric spaces..Fuzzy Sets and Systems 88 (1997), 119-128. MR 1449500
Reference: [6] Cho, Y. J., Petrot, N.: Existence theorems for fixed fuzzy points with closed $\alpha$-cut sets in complete metric spaces..Fuzzy Sets and Systems 26 (2011), 115-124. Zbl 1207.54055, MR 2789801
Reference: [7] Deng, Z. K.: Fuzzy pseudo-metric spaces..J. Math. Anal. Appl. 86 (1982), 74-95. Zbl 0589.54006, 10.1016/0022-247X(82)90255-4
Reference: [8] Engelking, R.: General Topology..PWN-Polish Science Publishers, Warsaw 1977. Zbl 1281.54001, MR 0500780
Reference: [9] George, A., Veeramani, P.: On some results in fuzzy metric spaces..Fuzzy Sets and Systems 64 (1994), 395-399. Zbl 0843.54014, MR 1289545, 10.1016/0165-0114(94)90162-7
Reference: [10] Ghil, B. M., Kim, Y. K.: Continuity of functions defined on the space of fuzzy sets..Inform. Sci. 157 (2003), 155-165. Zbl 1051.54004, MR 2023712, 10.1016/S0020-0255(03)00180-4
Reference: [11] Gregori, V., Sapena, A.: On fixed point theorem in fuzzy metric spaces..Fuzzy Sets and Systems 125 (2002), 245-252. MR 1880341
Reference: [12] Gregori, V., Romaguera, S.: On completion of fuzzy metric spaces..Fuzzy Sets and Systems 130 (2002), 399-404. Zbl 1010.54002, MR 1928435
Reference: [13] Gregori, V., Romaguera, S.: Characterizing completable fuzzy metric spaces..Fuzzy Sets and Systems 144 (2004), 411-420. Zbl 1057.54010, MR 2061403, 10.1016/S0165-0114(03)00161-1
Reference: [14] Gregori, V., Morillas, S., Sapena, A.: Examples of fuzzy metrics and applications..Fuzzy Sets and Systems 170 (2011), 95-111. Zbl 1210.94016, MR 2775611
Reference: [15] Hausdorff, F.: Set Theory..Chelsea, New York 1957. Zbl 1149.01022, MR 0086020
Reference: [16] Hop, N.V.: Solving fuzzy (stochastic) linear programming problems using superiority and inferiority measures..Inform. Sci. 177 (2007), 1977-1991. Zbl 1128.90061, MR 2303963, 10.1016/j.ins.2006.12.001
Reference: [17] Hop, N. V.: Solving linear programming problems under fuzziness and randomness environment using attainment values..Inform. Sci. 177 (2007), 2971-2984. Zbl 1178.90363, MR 2333449, 10.1016/j.ins.2007.01.032
Reference: [18] Joo, S. Y., Kim, Y. K.: The Skorokhod topology on space of fuzzy numbers..Fuzzy Sets and Systems 111 (2000), 497-501. Zbl 0961.54024, MR 1748559, 10.1016/S0165-0114(98)00185-7
Reference: [19] Joo, S. Y., Kim, Y. K.: Topological properties on the space of fuzzy sets..J. Math. Anal. Appl. 246 (2000), 576-590. Zbl 0986.54012, MR 1761949, 10.1006/jmaa.2000.6820
Reference: [20] Kaleva, O., Seikkala, S.: On fuzzy metric spaces..Fuzzy Sets and Systems 12 (1984), 215-229. Zbl 0558.54003, MR 0740095, 10.1016/0165-0114(84)90069-1
Reference: [21] Kaleva, O.: On the convergence of fuzzy sets..Fuzzy Sets and Systems 17 (1985), 53-65. Zbl 0584.54004, MR 0808463, 10.1016/0165-0114(85)90006-5
Reference: [22] Kaleva, O.: Fuzzy differential equations..Fuzzy Sets and Systems 24 (1987), 301-317. Zbl 1100.34500, MR 0919058, 10.1016/0165-0114(87)90029-7
Reference: [23] Kim, Y. K.: Compactness and convexity on the space of fuzzy sets..J. Math. Anal. Appl. 264 (2001), 122-132. Zbl 1065.54001, MR 1868332, 10.1006/jmaa.2001.7658
Reference: [24] Kim, Y. K.: Compactness and convexity on the space of fuzzy sets II..Nonlinear Anal. Theory Methods Appl. 57 (2004), 639-653. Zbl 1065.54001, MR 2067725
Reference: [25] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer Academic Publishers, Dordrecht 2000. Zbl 1087.20041, MR 1790096
Reference: [26] Kramosil, I., Michálek, J.: Fuzzy metric and statistical metric spaces..Kybernetika 11 (1975), 326-334. MR 0410633
Reference: [27] Matheron, G.: Random Sets and Integral Geometry..Wiley, New York 1975. Zbl 0321.60009, MR 0385969
Reference: [28] Mordukhovich, B. S., Shao, Y.: Fuzzy calculus for coderivatives of multifunctions..Nonlinear Anal. Theory Methods Appl. 29 (1997), 605-626. Zbl 0879.58006, MR 1452749, 10.1016/S0362-546X(96)00082-X
Reference: [29] Jr, S. B. Nadler: Multi-valued contraction mappings..Pacific J. Math. 30 (1969), 475-487. MR 0254828, 10.2140/pjm.1969.30.475
Reference: [30] Puri, M. L., Ralescu, D. A.: Fuzzy random variables..J. Math. Anal. Appl. 114 (1986), 409-422. Zbl 0605.60038, MR 0833596, 10.1016/0022-247X(86)90093-4
Reference: [31] Qiu, D., Zhang, W.: On Decomposable Measures Induced by Metrics..J. Appl. Math. Volume 2012, Article ID 701206, 8 pages. Zbl 1252.28001, MR 2948100
Reference: [32] Qiu, D., Zhang, W.: The strongest t-norm for fuzzy metric spaces..Kybernetika 49 (2013), 141-148. Zbl 1264.54020, MR 3097387
Reference: [33] Qiu, D., Zhang, W., Li, C.: On decomposable measures constructed by using stationary fuzzy pseudo-ultrametrics..Int. J. Gen. Syst. 42 (2013), 395-404. Zbl 1280.28018, MR 3022374, 10.1080/03081079.2012.758879
Reference: [34] Qiu, D., Zhang, W., Li, C.: Extension of a class of decomposable measures using fuzzy pseudometrics..Fuzzy Sets and Systems 222 (2013), 33-44. Zbl 1284.28017, MR 3053889
Reference: [35] Rodríguez-López, J., Romaguera, S.: The Hausdorff fuzzy metric on compact sets..Fuzzy Sets and Systems 147 (2004), 273-283. Zbl 1069.54009, MR 2089291
Reference: [36] Romaguera, S., Sanchis, M.: On fuzzy metric groups..Fuzzy Sets and Systems 124 (2001), 109-115. Zbl 0994.54007, MR 1859783, 10.1016/S0165-0114(00)00085-3
Reference: [37] Shi, F. G., Zheng, C. Y.: Metrization theorems in L-topological spaces..Fuzzy Sets and Systems 149 (2005), 455-471. Zbl 1070.54007, MR 2111885, 10.1016/j.fss.2004.02.003
Reference: [38] Trillas, E.: On the use of words and fuzzy sets..Inf. Sci. 176 (2006), 1463-1487. Zbl 1098.03066, MR 2225325, 10.1016/j.ins.2005.03.008
Reference: [39] Zadeh, L. A.: Fuzzy sets..Inform. Control 8 (1965), 338-353. Zbl 0942.00007, MR 0219427, 10.1016/S0019-9958(65)90241-X
Reference: [40] Zhang, W., Qiu, D., Li, Z., Xiong, G.: Common fixed point theorems in a new fuzzy metric space..J. Appl. Math. Volume 2012, Article ID 890678, 18 pages. Zbl 1235.54057, MR 2880834, 10.1155/2012/890678
.

Files

Files Size Format View
Kybernetika_50-2014-5_9.pdf 302.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo