Previous |  Up |  Next

Article

Title: A modified version of explicit Runge-Kutta methods for energy-preserving (English)
Author: Hu, Guang-Da
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 5
Year: 2014
Pages: 838-847
Summary lang: English
.
Category: math
.
Summary: In this paper, Runge-Kutta methods are discussed for numerical solutions of conservative systems. For the energy of conservative systems being as close to the initial energy as possible, a modified version of explicit Runge-Kutta methods is presented. The order of the modified Runge-Kutta method is the same as the standard Runge-Kutta method, but it is superior in energy-preserving to the standard one. Comparing the modified Runge-Kutta method with the standard Runge-Kutta method, numerical experiments are provided to illustrate the effectiveness of the modified Runge-Kutta method. (English)
Keyword: energy-preserving
Keyword: explicit Runge–Kutta methods
Keyword: gradient
MSC: 34A34
MSC: 65L05
MSC: 65L06
MSC: 65L07
idZBL: Zbl 06410707
idMR: MR3301864
DOI: 10.14736/kyb-2014-5-0838
.
Date available: 2015-01-13T09:43:03Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144110
.
Reference: [1] Brugnano, L., Calvo, M., Montijano, J. I., Rândez, L.: Energy-preserving methods for Poisson systems..J. Comput. Appl. Math. 236 (2012), 3890-3904. Zbl 1247.65092, MR 2926249, 10.1016/j.cam.2012.02.033
Reference: [2] Brugnano, L., Iavernaro, F., Trigiante, D.: Hamiltonian boundary value methods (energy-preserving discrete line integral methods)..J. Numer. Anal. Ind. Appl. Math. 5 (2010), 1-2, 17-37. MR 2833606
Reference: [3] Calvo, M., Laburta, M. P., Montijano, J. I., Rândez, L.: Error growth in numerical integration of periodic orbits..Math. Comput. Simul. 81 (2011), 2646-2661. MR 2822275, 10.1016/j.matcom.2011.05.007
Reference: [4] Calvo, M., Iserles, A., Zanna, A.: Numerical solution of isospectral flows..Math. Comput. 66 (1997), 1461-1486. Zbl 0907.65067, MR 1434938, 10.1090/S0025-5718-97-00902-2
Reference: [5] Cooper, G. J.: Stability of Runge-Kutta methods for trajectory problems..IMA J. Numer. Anal. 7 (1987), 1-13. Zbl 0624.65057, MR 0967831, 10.1093/imanum/7.1.1
Reference: [6] Buono, N. Del, Mastroserio, C.: Explicit methods based on a class of four stage Runge-Kutta methods for preserving quadratic laws..J. Comput. Appl. Math. 140 (2002), 231-243. MR 1934441, 10.1016/S0377-0427(01)00398-3
Reference: [7] Griffiths, D. F., Higham, D. J.: Numerical Methods for Ordinary Differential Equations..Springer-Verlag, London 2010. Zbl 1209.65070, MR 2759806
Reference: [8] Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration..Springer-Verlag, Berlin 2002. Zbl 1228.65237, MR 1904823
Reference: [9] Khalil, H. K.: Nonlinear Systems. Third Edition..Prentice Hall, Upper Saddle River, NJ 2002.
Reference: [10] Lee, T., Leok, M., McClamroch, N. H.: Lie variational integrators for the full body problem in orbital methanics..Celest. Meth. Dyn. Astr. 98 (2007), 121-144. MR 2321987, 10.1007/s10569-007-9073-x
Reference: [11] Li, S.: Introduction to Classical Mechanics. (In Chinese.).University of Science and Technology of China, Hefei 2007.
Reference: [12] Shampine, L. F.: Conservation laws and numerical solution of ODEs..Comput. Math. Appl. 12B (1986), 1287-1296. MR 0871366, 10.1016/0898-1221(86)90253-1
.

Files

Files Size Format View
Kybernetika_50-2014-5_14.pdf 5.415Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo