Previous |  Up |  Next

Article

Title: Stability and contagion measures for spatial extreme value analyzes (English)
Author: Fonseca, Cecília
Author: Ferreira, Helena
Author: Pereira, Luísa
Author: Martins, Ana Paula
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 6
Year: 2014
Pages: 914-928
Summary lang: English
.
Category: math
.
Summary: As part of global climate change an accelerated hydrologic cycle (including an increase in heavy precipitation) is anticipated (Trenberth [20, 21]). So, it is of great importance to be able to quantify high-impact hydrologic relationships, for example, the impact that an extreme precipitation (or temperature) in a location has on a surrounding region. Building on the Multivariate Extreme Value Theory we propose a contagion index and a stability index. The contagion index makes it possible to quantify the effect that an exceedance above a high threshold can have on a region. The stability index reflects the expected number of crossings of a high threshold in a region associated to a specific location $i$, given the occurrence of at least one crossing at that location. We will find some relations with well-known extremal dependence measures found in the literature, which will provide immediate estimators. For these estimators an application to the annual maxima precipitation in Portuguese regions is presented. (English)
Keyword: spatial extremes
Keyword: max-stable processes
Keyword: extremal dependence
MSC: 60G70
MSC: 86A05
MSC: 86A10
idZBL: Zbl 06416867
idMR: MR3301779
DOI: 10.14736/kyb-2014-6-0914
.
Date available: 2015-01-13T09:52:12Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144116
.
Reference: [1] Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes: Theory and Applications..John Wiley, 2004. Zbl 1070.62036, MR 2108013
Reference: [2] Coles, S. G.: Regional modelling of extreme storms via max-stable processes..J. R. Stat. Soc. Ser. B 55 (1993), 797-816. Zbl 0781.60041, MR 1229882
Reference: [3] Davison, A. C., Huser, R.: Space-time modelling of extreme events..J. R. Stat. Soc. Ser. B 76 (2013), 439-461. MR 3164873
Reference: [4] Einmahl, J., Li, J., Liu, R.: Extreme value theory approach to simultaneous monitoring and thresholding of multiple risk indicators..CentER Discussion Paper (Int. Rep. 2006-104) Econometrics, 2006.
Reference: [5] Ferreira, H.: Dependence between two multivariate extremes..Stat. Probab. Lett. 81 (2011), 586-591. Zbl 1209.62122, MR 2772916, 10.1016/j.spl.2011.01.014
Reference: [6] Ferreira, H., Ferreira, M.: On extremal dependence: some contributions..Test 21 (2012), 566-583. Zbl 1275.62047, MR 2983238, 10.1007/s11749-011-0261-3
Reference: [7] Fonseca, C., Pereira, L., Ferreira, H., Martins, A. P.: Generalized madogram and pairwise dependence of maxima over two disjoint regions of a random field..arXiv: http://arxiv.org/pdf/1104.2637v2.pdf, 2012.
Reference: [8] Geluk, J. L., Haan, L. De, Vries, C. G. De: Weak and strong financial fragility..Tinbergen Institute Discussion Paper, TI 2007-023/2.
Reference: [9] Krajina, A.: An M-Estimator of Multivariate Dependence Concepts..Tilburg University Press, Tilburg 2010.
Reference: [10] Li, H.: Orthant tail dependence of multivariate extreme value distributions..J. Multivariate Anal. 46 (2009), 262-282. Zbl 1151.62041, MR 2460490
Reference: [11] Resnick, S. I.: Extreme Values, Regular Variation and Point Processes..Springer-Verlag, Berlin 1987. Zbl 1136.60004, MR 0900810
Reference: [12] Schlather, M.: Models for stationary max-stable random fields..Extremes 5 (2002), 33-44. Zbl 1035.60054, MR 1947786, 10.1023/A:1020977924878
Reference: [13] Schlather, M., Tawn, J.: A dependence measure for multivariate and spatial extreme values: Properties and inference..Biometrika 90 (2003), 139-156. Zbl 1035.62045, MR 1966556, 10.1093/biomet/90.1.139
Reference: [14] Schmidt, R.: Tail dependence for elliptically countered distributions..Math. Methods Oper. Res. 55 (2002), 301-327. MR 1919580, 10.1007/s001860200191
Reference: [15] Schmidt, R., Stadmüller, U.: Non parametric estimation of tail dependence..Scand. J. Stat. 33 (2006), 307-335. MR 2279645, 10.1111/j.1467-9469.2005.00483.x
Reference: [16] Sibuya, M.: Bivariate extreme statistics..Ann. Inst. Stat. Math. 11 (1960), 195-210. Zbl 0095.33703, MR 0115241, 10.1007/BF01682329
Reference: [17] Smith, R. L.: Max-stable processes and spatial extremes..Unpublished manuscript. http://www.stat.unc.edu/postscript/rs/spatex.pdf, 1990.
Reference: [18] Smith, R. L., Weissman, I.: Characterization and estimation of the multivariate extremal index..Technical Report, Department of Statistics, University of North Carolina. http://www.stat.unc.edu/postscript/rs/extremal.pdf, 1996.
Reference: [19] Oliveira, J. Tiago de: Structure theory of bivariate extremes, extensions..Est. Mat., Est. and Econ. 7 (1992/93), 165-195. MR 1229356
Reference: [20] Trenberth, K. E.: Atmospheric moisture residence times and cycling implications for rainfall rates and climate change..Climate Change 39 (1998), 667-694. 10.1023/A:1005319109110
Reference: [21] Trenberth, K. E.: Conceptual framework for changes of extremes of the hydrological cycle with climate change..Climate Change 42 (1999) 327-339. 10.1023/A:1005488920935
Reference: [22] Zhang, Z., Smith, R. L.: The behavior of multivariate maxima of moving maxima processes..J. Appl. Probab. 41 (2004), 1113-1123. Zbl 1122.60052, MR 2122805, 10.1239/jap/1101840556
.

Files

Files Size Format View
Kybernetika_50-2014-6_5.pdf 494.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo