Previous |  Up |  Next


spatial extremes; max-stable processes; extremal dependence
As part of global climate change an accelerated hydrologic cycle (including an increase in heavy precipitation) is anticipated (Trenberth [20, 21]). So, it is of great importance to be able to quantify high-impact hydrologic relationships, for example, the impact that an extreme precipitation (or temperature) in a location has on a surrounding region. Building on the Multivariate Extreme Value Theory we propose a contagion index and a stability index. The contagion index makes it possible to quantify the effect that an exceedance above a high threshold can have on a region. The stability index reflects the expected number of crossings of a high threshold in a region associated to a specific location $i$, given the occurrence of at least one crossing at that location. We will find some relations with well-known extremal dependence measures found in the literature, which will provide immediate estimators. For these estimators an application to the annual maxima precipitation in Portuguese regions is presented.
[1] Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes: Theory and Applications. John Wiley, 2004. MR 2108013 | Zbl 1070.62036
[2] Coles, S. G.: Regional modelling of extreme storms via max-stable processes. J. R. Stat. Soc. Ser. B 55 (1993), 797-816. MR 1229882 | Zbl 0781.60041
[3] Davison, A. C., Huser, R.: Space-time modelling of extreme events. J. R. Stat. Soc. Ser. B 76 (2013), 439-461. MR 3164873
[4] Einmahl, J., Li, J., Liu, R.: Extreme value theory approach to simultaneous monitoring and thresholding of multiple risk indicators. CentER Discussion Paper (Int. Rep. 2006-104) Econometrics, 2006.
[5] Ferreira, H.: Dependence between two multivariate extremes. Stat. Probab. Lett. 81 (2011), 586-591. DOI 10.1016/j.spl.2011.01.014 | MR 2772916 | Zbl 1209.62122
[6] Ferreira, H., Ferreira, M.: On extremal dependence: some contributions. Test 21 (2012), 566-583. DOI 10.1007/s11749-011-0261-3 | MR 2983238 | Zbl 1275.62047
[7] Fonseca, C., Pereira, L., Ferreira, H., Martins, A. P.: Generalized madogram and pairwise dependence of maxima over two disjoint regions of a random field. arXiv:, 2012.
[8] Geluk, J. L., Haan, L. De, Vries, C. G. De: Weak and strong financial fragility. Tinbergen Institute Discussion Paper, TI 2007-023/2.
[9] Krajina, A.: An M-Estimator of Multivariate Dependence Concepts. Tilburg University Press, Tilburg 2010.
[10] Li, H.: Orthant tail dependence of multivariate extreme value distributions. J. Multivariate Anal. 46 (2009), 262-282. MR 2460490 | Zbl 1151.62041
[11] Resnick, S. I.: Extreme Values, Regular Variation and Point Processes. Springer-Verlag, Berlin 1987. MR 0900810 | Zbl 1136.60004
[12] Schlather, M.: Models for stationary max-stable random fields. Extremes 5 (2002), 33-44. DOI 10.1023/A:1020977924878 | MR 1947786 | Zbl 1035.60054
[13] Schlather, M., Tawn, J.: A dependence measure for multivariate and spatial extreme values: Properties and inference. Biometrika 90 (2003), 139-156. DOI 10.1093/biomet/90.1.139 | MR 1966556 | Zbl 1035.62045
[14] Schmidt, R.: Tail dependence for elliptically countered distributions. Math. Methods Oper. Res. 55 (2002), 301-327. DOI 10.1007/s001860200191 | MR 1919580
[15] Schmidt, R., Stadmüller, U.: Non parametric estimation of tail dependence. Scand. J. Stat. 33 (2006), 307-335. DOI 10.1111/j.1467-9469.2005.00483.x | MR 2279645
[16] Sibuya, M.: Bivariate extreme statistics. Ann. Inst. Stat. Math. 11 (1960), 195-210. DOI 10.1007/BF01682329 | MR 0115241 | Zbl 0095.33703
[17] Smith, R. L.: Max-stable processes and spatial extremes. Unpublished manuscript., 1990.
[18] Smith, R. L., Weissman, I.: Characterization and estimation of the multivariate extremal index. Technical Report, Department of Statistics, University of North Carolina., 1996.
[19] Oliveira, J. Tiago de: Structure theory of bivariate extremes, extensions. Est. Mat., Est. and Econ. 7 (1992/93), 165-195. MR 1229356
[20] Trenberth, K. E.: Atmospheric moisture residence times and cycling implications for rainfall rates and climate change. Climate Change 39 (1998), 667-694. DOI 10.1023/A:1005319109110
[21] Trenberth, K. E.: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climate Change 42 (1999) 327-339. DOI 10.1023/A:1005488920935
[22] Zhang, Z., Smith, R. L.: The behavior of multivariate maxima of moving maxima processes. J. Appl. Probab. 41 (2004), 1113-1123. DOI 10.1239/jap/1101840556 | MR 2122805 | Zbl 1122.60052
Partner of
EuDML logo