Previous |  Up |  Next

Article

Title: On optimal matching measures for matching problems related to the Euclidean distance (English)
Author: Mazón, José Manuel
Author: Rossi, Julio Daniel
Author: Toledo, Julián
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 4
Year: 2014
Pages: 553-566
Summary lang: English
.
Category: math
.
Summary: We deal with an optimal matching problem, that is, we want to transport two measures to a given place (the target set) where they will match, minimizing the total transport cost that in our case is given by the sum of two different multiples of the Euclidean distance that each measure is transported. We show that such a problem has a solution with an optimal matching measure supported in the target set. This result can be proved by an approximation procedure using a $p$-Laplacian system. We prove that any optimal matching measure for this problem is supported on the boundary of the target set when the two multiples that affect the Euclidean distances involved in the cost are different. Moreover, we present simple examples showing uniqueness or non-uniqueness of the optimal measure. (English)
Keyword: mass transport
Keyword: Monge-Kantorovich problem
Keyword: $p$-Laplacian equation
MSC: 45G10
MSC: 49J20
MSC: 49J45
MSC: 49Q20
idZBL: Zbl 06433680
idMR: MR3306846
DOI: 10.21136/MB.2014.144132
.
Date available: 2015-02-04T09:06:46Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144132
.
Reference: [1] Agueh, M., Carlier, G.: Barycenters in the Wasserstein space.SIAM J. Math. Anal. 43 (2011), 904-924. Zbl 1223.49045, MR 2801182, 10.1137/100805741
Reference: [2] Ambrosio, L.: Lecture notes on optimal transport problems.Mathematical Aspects of Evolving Interfaces. Lectures given at the C.I.M.-C.I.M.E. joint Euro-summer school, Madeira, Funchal, Portugal Lecture Notes in Math. 1812 Springer, Berlin (2003), 1-52 P. Colli et al. \goodbreak. Zbl 1047.35001, MR 2011032
Reference: [3] Carlier, G.: Duality and existence for a class of mass transportation problems and economic applications.S. Kusuoka et al. Advances in Mathematical Economics 5 Springer, Tokyo (2003), 1-21. Zbl 1176.90409, MR 2160899, 10.1007/978-4-431-53979-7_1
Reference: [4] Carlier, G., Ekeland, I.: Matching for teams.Econ. Theory 42 (2010), 397-418. Zbl 1183.91112, MR 2564442, 10.1007/s00199-008-0415-z
Reference: [5] Chiappori, P.-A., McCann, R. J., Nesheim, L. P.: Hedonic price equilibria, stable matching, and optimal transport: Equivalence, topology, and uniqueness.Econ. Theory 42 (2010), 317-354. Zbl 1183.91056, MR 2564439
Reference: [6] Ekeland, I.: Existence, uniqueness and efficiency of equilibrium in hedonic markets with multidimensional types.Econ. Theory 42 (2010), 275-315. Zbl 1203.91153, MR 2564438, 10.1007/s00199-008-0427-8
Reference: [7] Ekeland, I.: Notes on optimal transportation.Econ. Theory 42 (2010), 437-459. Zbl 1185.90019, MR 2564444, 10.1007/s00199-008-0426-9
Reference: [8] Ekeland, I.: An optimal matching problem.ESAIM, Control Optim. Calc. Var. 11 (2005), 57-71. Zbl 1106.49054, MR 2110613, 10.1051/cocv:2004034
Reference: [9] Ekeland, I., Heckman, J. J., Nesheim, L.: Identification and Estimates of Hedonic Models.Journal of Political Economy 112 (2004), S60--S109. 10.1086/379947
Reference: [10] Evans, L. C., Gangbo, W.: Differential equations methods for the Monge-Kantorovich mass transfer problem.Mem. Am. Math. Soc. 137 (1999), 66. Zbl 0920.49004, MR 1464149
Reference: [11] Igbida, N., Mazón, J. M., Rossi, J. D., Toledo, J.: A Monge-Kantorovich mass transport problem for a discrete distance.J. Funct. Anal. 260 (2011), 3494-3534. Zbl 1225.49047, MR 2781969, 10.1016/j.jfa.2011.02.023
Reference: [12] Mazón, J. M., Rossi, J. D., Toledo, J.: An optimal matching problem for the Euclidean distance.SIAM J. Math. Anal. 46 (2014), 233-255. Zbl 1297.49006, MR 3151384, 10.1137/120901465
Reference: [13] Mazón, J. M., Rossi, J. D., Toledo, J.: An optimal transportation problem with a cost given by the Euclidean distance plus import/export taxes on the boundary.Rev. Mat. Iberoam. 30 (2014), 277-308. MR 3186940, 10.4171/RMI/778
Reference: [14] Pass, B.: Multi-marginal optimal transport and multi-agent matching problems: uniqueness and structure of solutions.Discrete Contin. Dyn. Syst. 34 (2014), 1623-1639. Zbl 1278.49054, MR 3121634, 10.3934/dcds.2014.34.1623
Reference: [15] Pass, B.: Regularity properties of optimal transportation problems arising in hedonic pricing models.ESAIM, Control Optim. Calc. Var. 19 (2013), 668-678. Zbl 1271.91053, MR 3092356, 10.1051/cocv/2012027
Reference: [16] Villani, C.: Optimal Transport. Old and New.Grundlehren der Mathematischen Wissenschaften 137 Springer, Berlin (2009). Zbl 1156.53003, MR 2459454, 10.1007/978-3-540-71050-9_28
Reference: [17] Villani, C.: Topics in Optimal Transportation.Graduate Studies in Mathematics 58 American Mathematical Society, Providence (2003). Zbl 1106.90001, MR 1964483
.

Files

Files Size Format View
MathBohem_139-2014-4_1.pdf 277.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo