Previous |  Up |  Next

Article

Title: Derived cones to reachable sets of a nonlinear differential inclusion (English)
Author: Cernea, Aurelian
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 4
Year: 2014
Pages: 567-575
Summary lang: English
.
Category: math
.
Summary: We consider a nonlinear differential inclusion defined by a set-valued map with nonconvex values and we prove that the reachable set of a certain variational inclusion is a derived cone in the sense of Hestenes to the reachable set of the initial differential inclusion. In order to obtain the continuity property in the definition of a derived cone we use a continuous version of Filippov's theorem for solutions of our differential inclusion. As an application, in finite dimensional spaces, we obtain a sufficient condition for local controllability along a reference trajectory. (English)
Keyword: derived cone
Keyword: $m$-dissipative operator
Keyword: local controllability
MSC: 34A60
MSC: 93B03
MSC: 93C15
idZBL: Zbl 06433681
idMR: MR3306847
DOI: 10.21136/MB.2014.144134
.
Date available: 2015-02-04T09:08:16Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144134
.
Reference: [1] Aubin, J. P., Frankowska, H.: Set-Valued Analysis.Systems and Control: Foundations and Applications 2 Birkhäuser, Boston (1990). Zbl 0713.49021, MR 1048347
Reference: [2] Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces.Noordhoff, Leyden (1976). Zbl 0328.47035, MR 0390843
Reference: [3] Căpraru, I., Cernea, A.: On the existence of solutions for nonlinear differential inclusions.14 pages, DOI:102478/aicu-2014-0016 (to appear) in Anal. Univ. "Al. I. Cuza", Iaşi. MR 3300732
Reference: [4] Cernea, A.: Local controllability of hyperbolic differential inclusions via derived cones.Rev. Roum. Math. Pures Appl. 47 (2002), 21-31. Zbl 1055.49002, MR 1978185
Reference: [5] Cernea, A.: Derived cones to reachable sets of differential-difference inclusions.Nonlinear Anal. Forum 11 (2006), 1-13. Zbl 1131.34047, MR 2251460
Reference: [6] Cernea, A.: Derived cones to reachable sets of discrete inclusions.Nonlinear Stud. 14 (2007), 177-187. Zbl 1213.93012, MR 2327830
Reference: [7] Cernea, A., Mirică, Ş.: Derived cones to reachable sets of differential inclusions.Mathematica 40 (1998), 35-62. Zbl 1281.34020, MR 1701249
Reference: [8] Hestenes, M. R.: Calculus of Variations and Optimal Control Theory.Wiley, New York (1966). Zbl 0173.35703, MR 0203540
Reference: [9] Lakshmikantham, V., Leela, S.: Nonlinear Differential Equations in Abstract Spaces.International Series in Nonlinear Mathematics: Theory, Methods and Applications 2 Pergamon Press, Oxford (1981). Zbl 0456.34002, MR 0616449
Reference: [10] Mirică, Ş.: New proof and some generalizations of the minimum principle in optimal control.J. Optimization Theory Appl. 74 (1992), 487-508. Zbl 0795.49013, MR 1181848, 10.1007/BF00940323
Reference: [11] Mirică, Ş.: Intersection properties of tangent cones and generalized multiplier rules.Optimization 46 (1999), 135-163. Zbl 0959.90048, MR 1729825, 10.1080/02331939908844449
.

Files

Files Size Format View
MathBohem_139-2014-4_2.pdf 247.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo