Previous |  Up |  Next

Article

Title: Accurate reduction of a model of circadian rhythms by delayed quasi-steady state assumptions (English)
Author: Vejchodský, Tomáš
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 4
Year: 2014
Pages: 577-585
Summary lang: English
.
Category: math
.
Summary: Quasi-steady state assumptions are often used to simplify complex systems of ordinary differential equations in the modelling of biochemical processes. The simplified system is designed to have the same qualitative properties as the original system and to have a small number of variables. This enables to use the stability and bifurcation analysis to reveal a deeper structure in the dynamics of the original system. This contribution shows that introducing delays to quasi-steady state assumptions yields a simplified system that accurately agrees with the original system not only qualitatively but also quantitatively. We derive the proper size of the delays for a particular model of circadian rhythms and present numerical results showing the accuracy of this approach. (English)
Keyword: biochemical networks
Keyword: gene regulatory networks
Keyword: oscillating systems
Keyword: periodic solutions
Keyword: model reduction
Keyword: accurate approximation
MSC: 34C15
MSC: 34C23
MSC: 80A30
MSC: 92B25
MSC: 92C45
idZBL: Zbl 06433682
idMR: MR3306848
DOI: 10.21136/MB.2014.144135
.
Date available: 2015-02-04T09:09:37Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144135
.
Reference: [1] Chen, L., Aihara, K.: Stability of genetic regulatory networks with time delay.IEEE Trans. Circuits Syst., I, Fundam. Theory Appl. 49 (2002), 602-608. MR 1909315, 10.1109/TCSI.2002.1001949
Reference: [2] Cotter, S. L., Vejchodský, T., Erban, R.: Adaptive finite element method assisted by stochastic simulation of chemical systems.SIAM J. Sci. Comput. 35 (2013), B107--B131. Zbl 1264.65158, MR 3033062, 10.1137/120877374
Reference: [3] Erban, R., Chapman, S. J., Kevrekidis, I. G., Vejchodský, T.: Analysis of a stochastic chemical system close to a sniper bifurcation of its mean-field model.SIAM J. Appl. Math. 70 (2009), 984-1016. Zbl 1200.80010, MR 2538635, 10.1137/080731360
Reference: [4] Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics.Mathematics in Science and Engineering 191 Academic Press, Boston, MA (1993). Zbl 0777.34002, MR 1218880
Reference: [5] Murray, J. D.: Mathematical Biology. Vol. 1: An Introduction.3rd Interdisciplinary Applied Mathematics 17 Springer, New York (2002). Zbl 1006.92001, MR 1908418
Reference: [6] Savageau, M.: Biochemical systems analysis: I. some mathematical properties of the rate law for the component enzymatic reactions.J. Theor. Biol. 25 (1969), 365-369. 10.1016/S0022-5193(69)80026-3
Reference: [7] Segel, L. A., Slemrod, M.: The quasi-steady-state assumption: a case study in perturbation.SIAM Rev. 31 (1989), 446-477. Zbl 0679.34066, MR 1012300, 10.1137/1031091
Reference: [8] Verdugo, A., Rand, R.: Hopf bifurcation in a DDE model of gene expression.Commun. Nonlinear Sci. Numer. Simul. 13 (2008), 235-242. Zbl 1134.34325, MR 2360687, 10.1016/j.cnsns.2006.05.001
Reference: [9] Vilar, J. M. G., Kueh, H. Y., Barkai, N., Leibler, S.: Mechanisms of noise-resistance in genetic oscillators.PNAS 99 (2002), 5988-5992. 10.1073/pnas.092133899
Reference: [10] Xie, Z., Kulasiri, D.: Modelling of circadian rhythms in Drosophila incorporating the interlocked PER/TIM and VRI/PDP1 feedback loops.J. Theor. Biol. 245 (2007), 290-304. MR 2306447, 10.1016/j.jtbi.2006.10.028
.

Files

Files Size Format View
MathBohem_139-2014-4_3.pdf 301.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo