Title:
|
Entropy of scalar reaction-diffusion equations (English) |
Author:
|
Slijepčević, Siniša |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
139 |
Issue:
|
4 |
Year:
|
2014 |
Pages:
|
597-605 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider scalar reaction-diffusion equations on bounded and extended domains, both with the autonomous and time-periodic nonlinear term. We discuss the meaning and implications of the ergodic Poincaré-Bendixson theorem to dynamics. In particular, we show that in the extended autonomous case, the space-time topological entropy is zero. Furthermore, we characterize in the extended nonautonomous case the space-time topological and metric entropies as entropies of a pair of commuting planar homeomorphisms. (English) |
Keyword:
|
reaction-diffusion equation |
Keyword:
|
attractor |
Keyword:
|
invariant measure |
Keyword:
|
entropy |
Keyword:
|
Poincaré-Bendixson theorem |
MSC:
|
35B40 |
MSC:
|
37A35 |
MSC:
|
37B40 |
MSC:
|
37L30 |
idZBL:
|
Zbl 06433684 |
idMR:
|
MR3306850 |
DOI:
|
10.21136/MB.2014.144137 |
. |
Date available:
|
2015-02-04T09:13:49Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144137 |
. |
Reference:
|
[1] Angenent, S.: The zero set of a solution of a parabolic equation.J. Reine Angew. Math. 390 (1988), 79-96. Zbl 0644.35050, MR 0953678 |
Reference:
|
[2] Eckmann, J.-P., Rougemont, J.: Coarsening by Ginzburg-Landau dynamics.Commun. Math. Phys. 199 (1998), 441-470. Zbl 1057.35508, MR 1666859, 10.1007/s002200050508 |
Reference:
|
[3] Fiedler, B., Mallet-Paret, J.: A Poincaré-Bendixson theorem for scalar reaction diffusion equations.Arch. Ration. Mech. Anal. 107 (1989), 325-345. Zbl 0704.35070, MR 1004714, 10.1007/BF00251553 |
Reference:
|
[4] Gallay, T., Slijepčević, S.: Energy flow in formally gradient partial differential equations on unbounded domains.J. Dyn. Differ. Equations 13 (2001), 757-789. Zbl 1003.35085, MR 1860285, 10.1023/A:1016624010828 |
Reference:
|
[5] Gallay, T., Slijepčević, S.: Distribution of energy and convergence to equilibria in extended dissipative systems.(to appear) in J. Dyn. Differ. Equations. |
Reference:
|
[6] Joly, R., Raugel, G.: Generic Morse-Smale property for the parabolic equation on the circle.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27 (2010), 1397-1440. Zbl 1213.35046, MR 2738326, 10.1016/j.anihpc.2010.09.001 |
Reference:
|
[7] Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems.Encyclopedia of Mathematics and Its Applications 54 Cambridge University Press, Cambridge (1995). Zbl 0878.58020, MR 1326374 |
Reference:
|
[8] Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains.Handbook of differential equations: Evolutionary Equations. Vol. IV C. M. Dafermos, M. Pokorný 103-200 Elsevier/North-Holland, Amsterdam (2008). Zbl 1221.37158, MR 2508165, 10.1016/S1874-5717(08)00003-0 |
Reference:
|
[9] Ollagnier, J. Moulin, Pinchon, D.: The variational principle.Studia Math. 72 (1982), 151-159. MR 0665415, 10.4064/sm-72-2-151-159 |
Reference:
|
[10] Slijepčević, S.: Extended gradient systems: Dimension one.Discrete Contin. Dyn. Syst. 6 (2000), 503-518. Zbl 1009.37004, MR 1757384, 10.3934/dcds.2000.6.503 |
Reference:
|
[11] Slijepčević, S.: The energy flow of discrete extended gradient systems.Nonlinearity 26 (2013), 2051-2079. Zbl 1309.37075, MR 3078107, 10.1088/0951-7715/26/7/2051 |
Reference:
|
[12] Slijepčević, S.: Ergodic Poincaré-Bendixson theorem for scalar reaction-diffusion equations. Preprint.. |
Reference:
|
[13] Slijepčević, S.: The Aubry-Mather theorem for driven generalized elastic chains.Discrete Contin. Dyn. Syst. 34 (2014), 2983-3011. Zbl 1293.34017, MR 3177671, 10.3934/dcds.2014.34.2983 |
Reference:
|
[14] Turaev, D., Zelik, S.: Analytical proof of space-time chaos in Ginzburg-Landau equations.Discrete Contin. Dyn. Syst. 28 (2010), 1713-1751. Zbl 1213.35376, MR 2679729, 10.3934/dcds.2010.28.1713 |
Reference:
|
[15] Zelik, S.: Formally gradient reaction-diffusion systems in $\mathbb{R}^{n}$ have zero spatio-temporal topological entropy.Discrete Contin. Dyn. Syst. suppl. vol. (2003), 960-966. MR 2018206 |
Reference:
|
[16] Zelik, S., Mielke, A.: Multi-pulse evolution and space-time chaos in dissipative systems.Mem. Am. Math. Soc. 198 (2009), 1-97. Zbl 1163.37003, MR 2499464 |
. |