Previous |  Up |  Next

Article

Title: $\rm BV$ solutions of rate independent differential inclusions (English)
Author: Krejčí, Pavel
Author: Recupero, Vincenzo
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 4
Year: 2014
Pages: 607-619
Summary lang: English
.
Category: math
.
Summary: We consider a class of evolution differential inclusions defining the so-called stop operator arising in elastoplasticity, ferromagnetism, and phase transitions. These differential inclusions depend on a constraint which is represented by a convex set that is called the characteristic set. For $\rm BV$ (bounded variation) data we compare different notions of $\rm BV$ solutions and study how the continuity properties of the solution operators are related to the characteristic set. In the finite-dimensional case we also give a geometric characterization of the cases when these kinds of solutions coincide for left continuous inputs. (English)
Keyword: differential inclusion
Keyword: stop operator
Keyword: rate independence
Keyword: convex set
MSC: 34A60
MSC: 34G25
MSC: 52B99
MSC: 74C05
idZBL: Zbl 06433685
idMR: MR3306851
DOI: 10.21136/MB.2014.144138
.
Date available: 2015-02-04T09:16:44Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144138
.
Reference: [1] Aumann, G.: Reelle Funktionen.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete 68 Springer, Berlin (1954), German. Zbl 0056.05202, MR 0061652
Reference: [2] Bourbaki, N.: Elements of Mathematics. Functions of a Real Variable. Elementary Theory.Springer Berlin (2004), translated from the 1976 French original. Zbl 1085.26001, MR 2013000
Reference: [3] Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert.North-Holland Mathematics Studies 5 North-Holland, Amsterdam, Elsevier, New York French (1973). MR 0348562
Reference: [4] Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions.Applied Mathematical Sciences 121 Springer, New York (1996). Zbl 0951.74002, MR 1411908, 10.1007/978-1-4612-4048-8_5
Reference: [5] Fraňková, D.: Regulated functions.Math. Bohem. 116 (1991), 20-59. MR 1100424
Reference: [6] Klein, O.: Representation of hysteresis operators acting on vector-valued monotaffine functions.Adv. Math. Sci. Appl. 22 (2012), 471-500. MR 3100006
Reference: [7] Krasnosel'skiĭ, M. A., Pokrovskiĭ, A. V.: Systems with Hysteresis.Springer Berlin (1989), translated from the Russian, Nauka, Moskva, 1983. MR 0742931
Reference: [8] Krejčí, P.: Evolution variational inequalities and multidimensional hysteresis operators.Nonlinear Differential Equations. Proceedings of the seminar in Differential Equations, Chvalatice, Czech Republic, 1998 Chapman & Hall/CRC Res. Notes Math. 404 Boca Raton (1999), 47-110 P. Drábek et al. Zbl 0949.47053, MR 1695378
Reference: [9] Krejčí, P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations.Gakuto International Series. Mathematical Sciences and Applications 8 Gakkōtosho, Tokyo (1996). MR 2466538
Reference: [10] Krejčí, P., Laurençot, P.: Generalized variational inequalities.J. Convex Anal. 9 (2002), 159-183. Zbl 1001.49014, MR 1917394
Reference: [11] Krejčí, P., Laurençot, P.: Hysteresis filtering in the space of bounded measurable functions.Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 5 (2002), 755-772. Zbl 1177.35125, MR 1934379
Reference: [12] Krejčí, P., Liero, M.: Rate independent Kurzweil processes.Appl. Math., Praha 54 (2009), 117-145. Zbl 1212.49007, MR 2491851, 10.1007/s10492-009-0009-5
Reference: [13] Krejčí, P., Recupero, V.: Comparing $\rm BV$ solutions of rate independent processes.J. Convex Anal. 21 (2014), 121-146. MR 3235307
Reference: [14] Krejčí, P., Roche, T.: Lipschitz continuous data dependence of sweeping processes in $\rm BV$ spaces.Discrete Contin. Dyn. Syst., Ser. B 15 (2011), 637-650. MR 2774131, 10.3934/dcdsb.2011.15.637
Reference: [15] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter.Czech. Math. J. 7 (1957), 418-449. Zbl 0090.30002, MR 0111875
Reference: [16] Logemann, H., Mawby, A. D.: Extending hysteresis operators to spaces of piecewise continuous functions.J. Math. Anal. Appl. 282 (2003), 107-127. Zbl 1042.47049, MR 2000333, 10.1016/S0022-247X(03)00097-0
Reference: [17] Marques, M. D. P. Monteiro: Differential Inclusions in Nonsmooth Mechanical Problems---Shocks and Dry Friction.Progress in Nonlinear Differential Equations and their Applications 9 Birkhäuser, Basel (1993). MR 1231975
Reference: [18] Moreau, J. J.: Evolution problem associated with a moving convex set in a Hilbert space.J. Differ. Equations 26 (1977), 347-374. MR 0508661, 10.1016/0022-0396(77)90085-7
Reference: [19] Moreau, J. J.: Solutions du processus de rafle au sens des mesures différentielles.Travaux Sém. Anal. Convexe 6 French (1976), Exposé No. 1, 17 pages. Zbl 0369.49007, MR 0637888
Reference: [20] Moreau, J. J.: Rafle par un convexe variable II.Travaux du Séminaire d'Analyse Convexe II U. É. R. de Math., Univ. Sci. Tech. Languedoc Montpellier French (1972), Exposé No. 3, 36 pages. Zbl 0343.49020, MR 0637728
Reference: [21] Recupero, V.: A continuity method for sweeping processes.J. Differ. Equations 251 (2011), 2125-2142. Zbl 1237.34116, MR 2823662, 10.1016/j.jde.2011.06.018
Reference: [22] Recupero, V.: $\rm BV$ solutions of rate independent variational inequalities.Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 10 (2011), 269-315. MR 2856149
Reference: [23] Recupero, V.: Extending vector hysteresis operators.J. Phys., Conf. Ser. 268 Article No. 0120124, 12 pages (2011). 10.1088/1742-6596/268/1/012024
Reference: [24] Recupero, V.: $\rm BV$-extension of rate independent operators.Math. Nachr. 282 (2009), 86-98. MR 2473132, 10.1002/mana.200610723
Reference: [25] Recupero, V.: On a class of scalar variational inequalities with measure data.Appl. Anal. 88 (2009), 1739-1753. Zbl 1177.74308, MR 2588416, 10.1080/00036810903397446
Reference: [26] Recupero, V.: Sobolev and strict continuity of general hysteresis operators.Math. Methods Appl. Sci. 32 (2009), 2003-2018. Zbl 1214.47081, MR 2560936, 10.1002/mma.1124
Reference: [27] Recupero, V.: On locally isotone rate independent operators.Appl. Math. Lett. 20 (2007), 1156-1160. Zbl 1152.47059, MR 2358793, 10.1016/j.aml.2006.10.006
Reference: [28] Siddiqi, A. H., Manchanda, P., Brokate, M.: On some recent developments concerning Moreau's sweeping process.Trends in Industrial and Applied Mathematics 33, Amritsar, 2001 Appl. Optim. 72 Kluwer, Dordrecht (2002), 339-354 A. H. Siddiqi et al. MR 1954114, 10.1007/978-1-4613-0263-6_15
Reference: [29] Visintin, A.: Differential Models of Hysteresis.Applied Mathematical Sciences 111 Springer, Berlin (1994), F. John et al. Zbl 0820.35004, MR 1329094
.

Files

Files Size Format View
MathBohem_139-2014-4_6.pdf 275.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo