Previous |  Up |  Next

Article

Keywords:
functional differential equation; nonlocal boundary value problem; positivity of Green's operator; fundamental matrix; differential inequalities
Summary:
We propose an approach for studying positivity of Green's operators of a nonlocal boundary value problem for the system of $n$ linear functional differential equations with the boundary conditions $n_{i}x_{i}-\sum \nolimits _{j=1}^{n}m_{ij}x_{j}=\beta _{i}$, $i=1,\dots ,n$, where $n_{i}$ and $m_{ij}$ are linear bounded “local” and “nonlocal“ functionals, respectively, from the space of absolutely continuous functions. For instance, $n_{i}x_{i}=x_{i}(\omega )$ or $n_{i}x_{i}=x_{i}(0)-x_{i}(\omega )$ and $m_{ij}x_{j}=\int _{0}^{\omega }k(s)x_{j}(s) {\rm d} s +\sum \nolimits _{r=1}^{n_{ij}}c_{ijr}x_{j}(t_{ijr})$ can be considered. It is demonstrated that the positivity of Green's operator of nonlocal problem follows from the positivity of Green's operator for auxiliary “local” problem which consists of a “close” equation and the local conditions $n_{i}x_{i}=\alpha _{i}$, $i=1,\dots ,n.$
References:
[1] Agarwal, R. P., Berezansky, L., Braverman, E., Domoshnitsky, A.: Nonoscillation Theory of Functional Differential Equations with Applications. Springer, New York (2012). MR 2908263 | Zbl 1253.34002
[2] Agarwal, R. P., Domoshnitsky, A.: On positivity of several components of solution vector for systems of linear functional differential equations. Glasg. Math. J. 52 (2010), 115-136. DOI 10.1017/S0017089509990218 | MR 2587821 | Zbl 1200.34073
[3] Agarwal, R. P., O'Regan, D.: Upper and lower solutions for singular problems with nonlinear boundary data. NoDEA, Nonlinear Differ. Equ. Appl. 9 (2002), 419-440. DOI 10.1007/PL00012607 | MR 1941266 | Zbl 1025.34019
[4] Azbelev, N., Maksimov, V., Rakhmatullina, L.: Introduction to the Theory of Linear Functional Differential Equations. Advanced Series in Mathematical Science and Engineering 3 World Federation Publishers Company, Atlanta (1995). MR 1422013 | Zbl 0867.34051
[5] Baxley, J. V.: A singular nonlinear boundary value problem: membrane response of a spherical cap. SIAM J. Appl. Math. 48 (1988), 497-505. DOI 10.1137/0148028 | MR 0941097 | Zbl 0642.34014
[6] Bolojan-Nica, O., Infante, G., Precup, R.: Existence results for systems with coupled nonlocal initial conditions. Nonlinear Anal., Theory Methods Appl., Ser. A 94 (2014), 231-242. DOI 10.1016/j.na.2013.08.019 | MR 3120688 | Zbl 1288.34019
[7] Cabada, A.: An overview of the lower and upper solutions method with nonlinear boundary value conditions. Bound. Value Probl. 2011 (2011), Article ID 893753, 18 pages. MR 2719294 | Zbl 1230.34001
[8] Domoshnitsky, A.: Maximum principles and nonoscillation intervals for first order Volterra functional differential equations. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 15 (2008), 769-814. MR 2469306
[9] Feller, W.: Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77 (1954), 1-31. DOI 10.1090/S0002-9947-1954-0063607-6 | MR 0063607 | Zbl 0059.11601
[10] Graef, J. R., Henderson, J., Yang, B.: Existence and nonexistence of positive solutions of an $n$-th order nonlocal boundary value problem. Dynamic Systems and Applications 5 G. S. Ladde et al. Atlanta, GA (2008), 86-191. MR 2468138 | Zbl 1203.34026
[11] Graef, J. R., Yang, B.: Positive solutions of a third order nonlocal boundary value problem. Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 89-97. MR 2375585 | Zbl 1153.34014
[12] Guidotti, P., Merino, S.: Gradual loss of positivity and hidden invariant cones in a scalar heat equation. Differ. Integral Equ. 13 (2000), 1551-1568. MR 1787081 | Zbl 0983.35013
[13] Hakl, R., Lomtatidze, A., Šremr, J.: Some Boundary Value Problems for First Order Scalar Functional Differential Equations. Folia, Mathematica 10 Masaryk University, Brno (2002). Zbl 1048.34004
[14] Infante, G.: Positive solutions of some nonlinear BVPs involving singularities and integral BCs. Discrete Contin. Dyn. Syst., Ser. S 1 (2008), 99-106. DOI 10.3934/dcdss.2008.1.99 | MR 2375586
[15] Infante, G., Minhós, F. M., Pietramala, P.: Non-negative solutions of systems of ODEs with coupled boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 4952-4960. DOI 10.1016/j.cnsns.2012.05.025 | MR 2960289 | Zbl 1280.34026
[16] Infante, G., Webb, J. R. L.: Nonlinear non-local boundary-value problems and perturbed Hammerstein integral equations. Proc. Edinb. Math. Soc. 49 (2006), 637-656. DOI 10.1017/S0013091505000532 | MR 2266153 | Zbl 1115.34026
[17] Kiguradze, I., Půža, B.: On boundary value problems for systems of linear functional differential equations. Czech. Math. J. 47 (1997), 341-373. DOI 10.1023/A:1022829931363 | MR 1452425 | Zbl 0930.34047
[18] Kiguradze, I., Půža, B.: Boundary Value Problems for Systems of Linear Functional Differential Equations. Folia, Mathematica 12 Masaryk University, Brno (2003). MR 2001509 | Zbl 1161.34300
[19] Krasnosel'skij, M. A., Vainikko, G. M., Zabreiko, P. P., Rutitskij, Ya. B., Stetsenko, V. Ya.: Approximate Solution of Operator Equations. Russian Nauka, Moskva (1969). MR 0259635
[20] O'Regan, D.: Upper and lower solutions for singular problems arising in the theory of membrane response of a spherical cap. Nonlinear Anal., Theory Methods Appl., Ser. A 47 (2001), 1163-1174. DOI 10.1016/S0362-546X(01)00255-3 | MR 1970727 | Zbl 1042.34523
[21] Precup, R., Trif, D.: Multiple positive solutions of non-local initial value problems for first order differential systems. Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 5961-5970. DOI 10.1016/j.na.2012.06.008 | MR 2948310 | Zbl 1245.34026
[22] Sommerfeld, A.: Ein Beitrag zur hydrodynamischen Erklärung der turbulenten Flüssig-keitsbewegungen. German Atti del IV Congresso Internazionale dei Matematici 3 Roma (1909), 116-124.
[23] Tchaplygin, S.: New Method of Approximate Integration of Differential Equations. GTTI, Moskva (1932), Russion.
[24] Webb, J. R. L.: Multiple positive solutions of some nonlinear heat flow problems. Discrete Contin. Dyn. Syst., suppl. (2005), 895-903. MR 2192752 | Zbl 1161.34007
[25] Webb, J. R. L.: Optimal constants in a nonlocal boundary value problem. Nonlinear Anal., Theory Methods Appl., Ser. A 63 (2005), 672-685. DOI 10.1016/j.na.2005.02.055 | MR 2188140 | Zbl 1153.34320
[26] Webb, J. R. L., Infante, G.: Positive solutions of nonlocal boundary value problems: a unified approach. J. Lond. Math. Soc., II. Ser. 74 (2006), 673-693. DOI 10.1112/S0024610706023179 | MR 2286439 | Zbl 1115.34028
[27] Webb, J. R. L., Infante, G.: Positive solutions of nonlocal boundary value problems involving integral conditions. NoDEA, Nonlinear Differ. Equ. Appl. 15 (2008), 45-67. DOI 10.1007/s00030-007-4067-7 | MR 2408344 | Zbl 1148.34021
[28] Yang, Z.: Positive solutions of a second-order integral boundary value problem. J. Math. Anal. Appl. 321 (2006), 751-765. DOI 10.1016/j.jmaa.2005.09.002 | MR 2241153 | Zbl 1106.34014
Partner of
EuDML logo