[1] Biler, P.: 
Global solutions to some parabolic-elliptic systems of chemotaxis. Adv. Math. Sci. Appl. 9 (1999), 347-359. 
MR 1690388 | 
Zbl 0941.35009 
[2] Biler, P.: 
Local and global solvability of some parabolic systems modelling chemotaxis. Adv. Math. Sci. Appl. 8 (1998), 715-743. 
MR 1657160 | 
Zbl 0913.35021 
[3] Fujie, K., Winkler, M., Yokota, T.: 
Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity. (to appear) in Math. Methods Appl. Sci. DOI:10.1002/mma.3149. 
DOI 10.1002/mma.3149 
[9] Mu, C., Wang, L., Zheng, P., Zhang, Q.: 
Global existence and boundedness of classical solutions to a parabolic-parabolic chemotaxis system. Nonlinear Anal., Real World Appl. 14 (2013), 1634-1642. 
MR 3004526 | 
Zbl 1261.35072 
[10] Nagai, T., Senba, T.: 
Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis. Adv. Math. Sci. Appl. 8 (1998), 145-156. 
MR 1623326 | 
Zbl 0902.35010 
[12] Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M.: 
Exponential attractor for a chemotaxis- growth system of equations. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 51 (2002), 119-144. 
DOI 10.1016/S0362-546X(01)00815-X | 
MR 1915744 | 
Zbl 1005.35023 
[13] Osaki, K., Yagi, A.: 
Global existence for a chemotaxis-growth system in $\mathbb R^2$. Adv. Math. Sci. Appl. 12 (2002), 587-606. 
MR 1943982 
[15] Sleeman, B. D., Levine, H. A.: 
Partial differential equations of chemotaxis and angiogenesis. Applied mathematical analysis in the last century Math. Methods Appl. Sci. 24 (2001), 405-426. 
DOI 10.1002/mma.212 | 
MR 1821934 | 
Zbl 0990.35014 
[16] Stinner, C., Winkler, M.: 
Global weak solutions in a chemotaxis system with large singular sensitivity. Nonlinear Anal., Real World Appl. 12 (2011), 3727-3740. 
MR 2833007 | 
Zbl 1268.35072