Previous |  Up |  Next

Article

Title: Computational studies of conserved mean-curvature flow (English)
Author: Kolář, Miroslav
Author: Beneš, Michal
Author: Ševčovič, Daniel
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 4
Year: 2014
Pages: 677-684
Summary lang: English
.
Category: math
.
Summary: The paper presents the results of numerical solution of the evolution law for the constrained mean-curvature flow. This law originates in the theory of phase transitions for crystalline materials and describes the evolution of closed embedded curves with constant enclosed area. It is reformulated by means of the direct method into the system of degenerate parabolic partial differential equations for the curve parametrization. This system is solved numerically and several computational studies are presented as well. (English)
Keyword: phase transitions
Keyword: area-preserving mean-curvature flow
Keyword: parametric method
MSC: 35K57
MSC: 35K65
MSC: 53C80
MSC: 65N40
idZBL: Zbl 06433691
idMR: MR3306857
DOI: 10.21136/MB.2014.144144
.
Date available: 2015-02-04T09:29:34Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144144
.
Reference: [1] Allen, S., Cahn, J.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening.Acta Metall. 27 1084-1095 (1979). 10.1016/0001-6160(79)90196-2
Reference: [2] Beneš, M.: Diffuse-interface treatment of the anisotropic mean-curvature flow. Mathematical and computer modeling in science and engineering.Appl. Math., Praha 48 (2003), 437-453. MR 2025297, 10.1023/B:APOM.0000024485.24886.b9
Reference: [3] Beneš, M., Kimura, M., Pauš, P., Ševčovič, D., Tsujikawa, T., Yazaki, S.: Application of a curvature adjusted method in image segmentation.Bull. Inst. Math., Acad. Sin. (N.S.) 3 (2008), 509-523. Zbl 1170.53040, MR 2502611
Reference: [4] Beneš, M., Kratochvíl, J., Křišťan, J., Minárik, V., Pauš, P.: A parametric simulation method for discrete dislocation dynamics.European Phys. J. ST 177 177-192 (2009). 10.1140/epjst/e2009-01174-7
Reference: [5] Beneš, M., Yazaki, S., Kimura, M.: Computational studies of non-local anisotropic Allen-Cahn equation.Math. Bohem. 136 (2011), 429-437. Zbl 1249.35153, MR 2985552
Reference: [6] Cahn, J. W., Hilliard, J. E.: Free energy of a nonuniform system. III. Nucleation of a two-component incompressible fluid.J. Chem. Phys. 31 688-699 (1959). 10.1063/1.1730447
Reference: [7] Dolcetta, I. Capuzzo, Vita, S. Finzi, March, R.: Area-preserving curve-shortening flows: From phase separation to image processing.Interfaces Free Bound. 4 (2002), 325-343. MR 1935642
Reference: [8] Deckelnick, K., Dziuk, G., Elliott, C. M.: Computation of geometric partial differential equations and mean curvature flow.Acta Numerica 14 (2005), 139-232. Zbl 1113.65097, MR 2168343, 10.1017/S0962492904000224
Reference: [9] Esedo\={g}lu, S., Ruuth, S. J., Tsai, R.: Threshold dynamics for high order geometric motions.Interfaces Free Bound. 10 (2008), 263-282. Zbl 1157.65330, MR 2453132
Reference: [10] Gage, M.: On an area-preserving evolution equation for plane curves.Nonlinear Problems in Geometry, Proc. AMS Spec. Sess., Mobile/Ala. 1985 Contemp. Math. 51 American Mathematical Society, Providence (1986), 51-62 D. M. DeTurck. Zbl 0608.53002, MR 0848933, 10.1090/conm/051/848933
Reference: [11] Grayson, M. A.: The heat equation shrinks embedded plane curves to round points.J. Differ. Geom. 26 (1987), 285-314. Zbl 0667.53001, MR 0906392, 10.4310/jdg/1214441371
Reference: [12] Henry, M., Hilhorst, D., Mimura, M.: A reaction-diffusion approximation to an area preserving mean curvature flow coupled with a bulk equation.Discrete Contin. Dyn. Syst., Ser. S 4 (2011), 125-154. Zbl 1207.35189, MR 2746398
Reference: [13] McCoy, J.: The surface area preserving mean curvature flow.Asian J. Math. 7 (2003), 7-30. Zbl 1078.53067, MR 2015239, 10.4310/AJM.2003.v7.n1.a2
Reference: [14] Minárik, V., Beneš, M., Kratochvíl, J.: Simulation of dynamical interaction between dislocations and dipolar loops.J. Appl. Phys. 107 Article No. 061802, 13 pages (2010). 10.1063/1.3340518
Reference: [15] Osher, S., Sethian, J. A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations.J. Comput. Phys. 79 (1988), 12-49. Zbl 0659.65132, MR 0965860, 10.1016/0021-9991(88)90002-2
Reference: [16] Rubinstein, J., Sternberg, P.: Nonlocal reaction-diffusion equations and nucleation.IMA J. Appl. Math. 48 (1992), 249-264. Zbl 0763.35051, MR 1167735, 10.1093/imamat/48.3.249
Reference: [17] Ševčovič, D.: Qualitative and quantitative aspects of curvature driven flows of planar curves.Topics on Partial Differential Equations Jindřich Nečas Center for Mathematical Modeling Lecture Notes 2 Matfyzpress, Praha 55-119 (2007), P. Kaplický et al. MR 2856665
.

Files

Files Size Format View
MathBohem_139-2014-4_12.pdf 447.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo