Previous |  Up |  Next

Article

Title: On asymptotics of discrete Mittag-Leffler function (English)
Author: Nechvátal, Luděk
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 4
Year: 2014
Pages: 667-675
Summary lang: English
.
Category: math
.
Summary: The (modified) two-parametric Mittag-Leffler function plays an essential role in solving the so-called fractional differential equations. Its asymptotics is known (at least for a subset of its domain and special choices of the parameters). The aim of the paper is to introduce a discrete analogue of this function as a solution of a certain two-term linear fractional difference equation (involving both the Riemann-Liouville as well as the Caputo fractional $h$-difference operators) and describe its asymptotics. Here, we shall employ our recent results on stability and asymptotics of solutions to the mentioned equation. (English)
Keyword: discrete Mittag-Leffler function
Keyword: fractional difference equation
Keyword: asymptotics
Keyword: backward $h$-Laplace transform
MSC: 33E12
MSC: 34A08
MSC: 39A12
idZBL: Zbl 06433690
idMR: MR3306856
DOI: 10.21136/MB.2014.144143
.
Date available: 2015-02-04T09:27:51Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144143
.
Reference: [1] Abdeljawad, T.: On delta and nabla Caputo fractional differences and dual identities.Discrete Dyn. Nat. Soc. 2013 (2013), Article No. 406910, 12 pages. MR 3081123
Reference: [2] Abdeljawad, T.: On Riemann and Caputo fractional differences.Comput. Math. Appl. 62 (2011), 1602-1611. Zbl 1228.26008, MR 2824747, 10.1016/j.camwa.2011.03.036
Reference: [3] Abdeljawad, T., Jarad, F., Baleanu, D.: A semigroup-like property for discrete Mittag-Leffler functions.Adv. Difference Equ. (electronic only) 2012 (2012), Article No. 72, 7 pages. Zbl 1292.39001, MR 2944466
Reference: [4] Atıcı, F. M., Eloe, P. W.: Linear systems of fractional nabla difference equations.Rocky Mt. J. Math. 41 (2011), 353-370. Zbl 1218.39003, MR 2794443, 10.1216/RMJ-2011-41-2-353
Reference: [5] Atıcı, F. M., Eloe, P. W.: Discrete fractional calculus with the nabla operator.Electron. J. Qual. Theory Differ. Equ., Special Issue I (electronic only) 2009 (2009), Article No. 3, 12 pages. Zbl 1189.39004, MR 2558828
Reference: [6] Atıcı, F. M., Eloe, P. W.: Initial value problems in discrete fractional calculus.Proc. Am. Math. Soc. 137 (2009), 981-989. Zbl 1166.39005, MR 2457438, 10.1090/S0002-9939-08-09626-3
Reference: [7] Bohner, M., Guseinov, G. S.: The $h$-Laplace and $q$-Laplace transforms.J. Math. Anal. Appl. 365 (2010), 75-92. Zbl 1188.44008, MR 2585078, 10.1016/j.jmaa.2009.09.061
Reference: [8] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. An Introduction with Applications.Birkhäuser, Basel (2001). Zbl 0978.39001, MR 1843232
Reference: [9] Čermák, J., Kisela, T., Nechvátal, L.: Stability regions for linear fractional differential systems and their discretizations.Appl. Math. Comput. 219 (2013), 7012-7022. Zbl 1288.34005, MR 3027865, 10.1016/j.amc.2012.12.019
Reference: [10] Čermák, J., Kisela, T., Nechvátal, L.: Discrete Mittag-Leffler functions in linear fractional difference equations.Abstr. Appl. Anal. 2011 (2011), Article No. 565067, 21 pages. Zbl 1220.39010, MR 2817254
Reference: [11] Čermák, J., Nechvátal, L.: On $(q,h)$-analogue of fractional calculus.J. Nonlinear Math. Phys. 17 (2010), 51-68. Zbl 1189.26006, MR 2647460, 10.1142/S1402925110000593
Reference: [12] Díaz, R., Pariguan, E.: On hypergeometric functions and Pochhammer $k$-symbol.Divulg. Mat. 15 (2007), 179-192. Zbl 1163.33300, MR 2422409
Reference: [13] Elaydi, S.: An Introduction to Difference Equations (3rd edition).Undergraduate Texts in Mathematics Springer, New York (2005). MR 2128146
Reference: [14] Gray, H. L., Zhang, N. F.: On a new definition of the fractional difference.Math. Comput. 50 (1988), 513-519. Zbl 0648.39002, MR 0929549, 10.1090/S0025-5718-1988-0929549-2
Reference: [15] Matignon, D.: Stability results for fractional differential equations with applications to control processing.Computational Engineering in Systems and Application Multiconference 2 IMACS, IEEE-SMC, Lille, France, 1996 963-968.
Reference: [16] Miller, K. S., Ross, B.: Fractional difference calculus.Univalent Functions, Fractional Calculus, and Their Applications, Kōriyama, 1988 Ellis Horwood Ser. Math. Appl. Horwood, Chichester (1989), 139-152 H. M. Srivastava et al. Zbl 0693.39002, MR 1199147
Reference: [17] Nagai, A.: Discrete Mittag-Leffler function and its applications.Sūrikaisekikenkyūsho Kōkyūroku 1302 (2003), 1-20 New developments in the research of integrable systems that are continuous, discrete and ultradiscrete, Japanese, Kyoto, 2002. MR 1986510
Reference: [18] Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications.Mathematics in Science and Engineering 198 Academic Press, San Diego (1999). Zbl 0924.34008, MR 1658022
Reference: [19] Qian, D., Li, C., Agarwal, R. P., Wong, P. J. Y.: Stability analysis of fractional differential system with Riemann-Liouville derivative.Math. Comput. Modelling 52 (2010), 862-874. Zbl 1202.34020, MR 2661771, 10.1016/j.mcm.2010.05.016
.

Files

Files Size Format View
MathBohem_139-2014-4_11.pdf 246.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo