Previous |  Up |  Next

Article

Title: Two notions which affected nonlinear analysis (Bernard Bolzano lecture) (English)
Author: Drábek, Pavel
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 4
Year: 2014
Pages: 699-711
Summary lang: English
.
Category: math
.
Summary: General mathematical theories usually originate from the investigation of particular problems and notions which could not be handled by available tools and methods. The Fučík spectrum and the $p$-Laplacian are typical examples in the field of nonlinear analysis. The systematic study of these notions during the last four decades led to several interesting and surprising results and revealed deep relationship between the linear and the nonlinear structures. This paper does not provide a complete survey. We focus on some pioneering works and present some contributions of the author. From this point of view the list of references is by no means exhaustive. (English)
Keyword: Fučík spectrum
Keyword: $p$-Laplacian
MSC: 34B15
MSC: 34B99
MSC: 35J92
MSC: 35P30
idZBL: Zbl 06433693
idMR: MR3306859
DOI: 10.21136/MB.2014.144146
.
Date available: 2015-02-04T09:34:21Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144146
.
Reference: [1] Anane, A.: Simplicity and isolation of first eigenvalue of the $p$-Laplacian with weight.C. R. Acad. Sci., Paris, Sér. I 305 French (1987), 725-728. Zbl 0633.35061, MR 0920052
Reference: [2] Anane, A., Tsouli, N.: On the second eigenvalue of the $p$-Laplacian.Nonlinear Partial Differential Equations. Based on the International Conference on Nonlinear Analysis, Fés, Morocco, 1994 Pitman Res. Notes Math. Ser. 343 Longman, Harlow (1996), 1-9 A. Benkirane et al. Zbl 0854.35081, MR 1417265
Reference: [3] Berkovits, J., Drábek, P., Leinfelder, H., Mustonen, V., Tajčová, G.: Time-periodic oscillations in suspension bridges: Existence of unique solutions.Nonlinear Anal., Real World Appl. 1 (2000), 345-362. Zbl 0989.74031, MR 1791531
Reference: [4] Binding, P. A., Drábek, P., Huang, Y. X.: On the Fredholm Alternative for the $p$-Laplacian.Proc. Am. Math. Soc. 125 (1997), 3555-3559. Zbl 0882.35049, MR 1416077, 10.1090/S0002-9939-97-03992-0
Reference: [5] Boccardo, L., Drábek, P., Giachetti, D., Kučera, M.: Generalization of Fredholm alternative for nonlinear differential operators.Nonlinear Anal., Theory Methods Appl. 10 (1986), 1083-1103. Zbl 0623.34031, MR 0857742, 10.1016/0362-546X(86)90091-X
Reference: [6] Dancer, E. N.: Boundary-value problems for weakly nonlinear ordinary differential equations.Bull. Aust. Math. Soc. 15 (1976), 321-328. Zbl 0342.34007, MR 0430384, 10.1017/S0004972700022747
Reference: [7] Pino, M. del, Drábek, P., Manásevich, R.: The Fredholm alternative at the first eigenvalue for the one dimensional $p$-Laplacian.J. Differ. Equations 151 (1999), 386-419. MR 1669705, 10.1006/jdeq.1998.3506
Reference: [8] Pino, M. A. del, Manásevich, R. F.: Global bifurcation from the eigenvalues of the $p$-Laplacian.J. Differ. Equations 92 (1991), 226-251. MR 1120904, 10.1016/0022-0396(91)90048-E
Reference: [9] Drábek, P.: Geometry of the energy functional and the Fredholm alternative for the $p$-Laplacian in higher dimensions.Proceedings of the 2001 Luminy Conference on Quasilinear Elliptic and Parabolic Equations and System, Electron. J. Differ. Equ. (electronic only) 8 (2002), 103-120. Zbl 1114.35318, MR 1990298
Reference: [10] Drábek, P.: Solvability and Bifurcations of Nonlinear Equations.Pitman Research Notes in Mathematics Series 264 Longman Scientific, Harlow; John Wiley, New York (1992). Zbl 0753.34002, MR 1175397
Reference: [11] Drábek, P.: On the global bifurcation for a class of degenerate equations.Ann. Mat. Pura Appl. (4) 159 (1991), 1-16. Zbl 0814.34018, MR 1145086
Reference: [12] Drábek, P.: On the resonance problem with nonlinearity which has arbitrary linear growth.J. Math. Anal. Appl. 127 (1987), 435-442. Zbl 0642.34009, MR 0915069, 10.1016/0022-247X(87)90121-1
Reference: [13] Drábek, P.: Ranges of homogeneous operators and their perturbations.Čas. Pěst. Mat. 105 (1980), 167-183. Zbl 0427.47048, MR 0573109
Reference: [14] Drábek, P., Girg, P., Takáč, P., Ulm, M.: The Fredholm alternative for the $p$-Laplacian: Bifurcation from infinity, existence and multiplicity.Indiana Univ. Math. J. 53 (2004), 433-482. Zbl 1081.35031, MR 2060041, 10.1512/iumj.2004.53.2396
Reference: [15] Drábek, P., Holubová, G.: Bifurcation of periodic solutions in symmetric models of suspension bridges.Topol. Methods Nonlinear Anal. 14 (1999), 39-58. Zbl 0967.35013, MR 1758879, 10.12775/TMNA.1999.021
Reference: [16] Drábek, P., Holubová, G., Matas, A., Nečesal, P.: Nonlinear models of suspension bridges: Discussion of the results. Mathematical and computer modeling in science and engineering.Appl. Math., Praha 48 (2003), 497-514. MR 2025959, 10.1023/B:APOM.0000024489.96314.7f
Reference: [17] Drábek, P., Kufner, A.: Discreteness and simplicity of the spectrum of a quasilinear Sturm-Liouville-type problem on an infinite interval.Proc. Am. Math. Soc. 134 (2006), 235-242. Zbl 1090.34066, MR 2170563, 10.1090/S0002-9939-05-07958-X
Reference: [18] Drábek, P., Kufner, A., Nicolosi, F.: Quasilinear Elliptic Equations with Degenerations and Singularities.De Gruyter Series in Nonlinear Analysis and Applications 5 Walter de Gruyter, Berlin (1997). Zbl 0894.35002, MR 1460729
Reference: [19] Drábek, P., Kuliev, K.: Half-linear Sturm-Liouville problem with weights.Bull. Belg. Math. Soc. -- Simon Stevin 19 (2012), 107-119. Zbl 1252.34034, MR 2952799, 10.36045/bbms/1331153412
Reference: [20] Drábek, P., Robinson, S. B.: On the solvability of resonance problems with respect to the Fučík spectrum.J. Math. Anal. Appl. 418 (2014), 884-905. MR 3206687, 10.1016/j.jmaa.2014.04.019
Reference: [21] Drábek, P., Robinson, S. B.: On the Fredholm alternative for the Fučík spectrum.Abstr. Appl. Anal. 2010 (2010), Article ID 125464, 20 pages. Zbl 1214.47011, MR 2754193
Reference: [22] Drábek, P., Robinson, S. B.: On the generalization of the Courant nodal domain theorem.J. Differ. Equations 181 (2002), 58-71. Zbl 1163.35449, MR 1900460, 10.1006/jdeq.2001.4070
Reference: [23] Drábek, P., Robinson, S. B.: Resonance problems for the $p$-Laplacian.J. Funct. Anal. 169 (1999), Article No. jfan.1999.3501, 189-200. Zbl 0940.35087, MR 1726752, 10.1006/jfan.1999.3501
Reference: [24] Elbert, A.: A half-linear second order differential equation.Qualitative Theory of Differential Equations, Vol. I, Szeged, 1979 Colloq. Math. Soc. János Bolyai 30 North-Holland, Amsterdam (1981), 153-180 M. Farkas. Zbl 0511.34006, MR 0680591
Reference: [25] Fučík, S.: Solvability of Nonlinear Equations and Boundary Value Problems.Mathematics and Its Applications 4 D. Reidel Publishing, Dordrecht (1980). MR 0620638
Reference: [26] Fučík, S.: Boundary value problems with jumping nonlinearities.Čas. Pěst. Mat. 101 (1976), 69-87. Zbl 0332.34016, MR 0447688
Reference: [27] Fučík, S., Nečas, J., Souček, J., Souček, V.: Spectral Analysis of Nonlinear Operators.Lecture Notes in Mathematics 346 Springer, Berlin (1973). Zbl 0268.47056, MR 0467421, 10.1007/BFb0059360
Reference: [28] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czech. Math. J. 41 (1991), 592-618. MR 1134951
Reference: [29] Krejčí, P.: On solvability of equations of the 4th order with jumping nonlinearities.Čas. Pěst. Mat. 108 (1983), 29-39. Zbl 0515.35013, MR 0694138
Reference: [30] Landesman, E. M., Lazer, A. C.: Nonlinear perturbations of linear elliptic boundary value problems at resonance.J. Math. Mech. 19 (1970), 609-623. Zbl 0193.39203, MR 0267269
Reference: [31] Lazer, A. C., McKenna, P. J.: Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis.SIAM Rev. 32 (1990), 537-578. Zbl 0725.73057, MR 1084570, 10.1137/1032120
Reference: [32] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory.Lecture Notes in Mathematics 1748 Springer, Berlin (2000). Zbl 0968.76531, MR 1810360, 10.1007/BFb0104030
Reference: [33] Švarc, R.: The solution of a Fučík's conjecture.Commentat. Math. Univ. Carol. 25 (1984), 483-517. Zbl 0562.47049, MR 0775566
.

Files

Files Size Format View
MathBohem_139-2014-4_14.pdf 286.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo