Previous |  Up |  Next

Article

Title: Generalizing a theorem of Schur (English)
Author: Jones, Lenny
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 4
Year: 2014
Pages: 1063-1065
Summary lang: English
.
Category: math
.
Summary: In a letter written to Landau in 1935, Schur stated that for any integer $t>2$, there are primes $p_{1}<p_{2}<\cdots <p_{t}$ such that $p_{1}+p_{2}>p_{t}$. In this note, we use the Prime Number Theorem and extend Schur's result to show that for any integers $t\ge k \ge 1$ and real $\epsilon >0$, there exist primes $p_{1}<p_{2}<\cdots <p_{t}$ such that \[ p_{1}+p_{2}+\cdots +p_{k}>(k-\epsilon )p_{t}. \] (English)
Keyword: Prime Number Theorem
Keyword: Schur
MSC: 11A41
MSC: 11N05
idZBL: Zbl 06433714
idMR: MR3304798
DOI: 10.1007/s10587-014-0153-2
.
Date available: 2015-02-09T17:41:24Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144161
.
Reference: [1] Lehmer, E.: On the magnitude of the coefficients of the cyclotomic polynomial.Bull. Am. Math. Soc. 42 389-392 (1936). Zbl 0014.39203, MR 1563307, 10.1090/S0002-9904-1936-06309-3
Reference: [2] Suzuki, J.: On coefficients of cyclotomic polynomials.Proc. Japan Acad., Ser. A 63 279-280 (1987). Zbl 0641.10008, MR 0931264, 10.3792/pjaa.63.279
.

Files

Files Size Format View
CzechMathJ_64-2014-4_14.pdf 185.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo