Previous |  Up |  Next

Article

Title: Characterizing pure, cryptic and Clifford inverse semigroups (English)
Author: Petrich, Mario
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 4
Year: 2014
Pages: 1099-1112
Summary lang: English
.
Category: math
.
Summary: An inverse semigroup $S$ is pure if $e=e^2$, $a\in S$, $e<a$ implies $a^2=a$; it is cryptic if Green's relation $\mathcal {H}$ on $S$ is a congruence; it is a Clifford semigroup if it is a semillatice of groups. We characterize the pure ones by the absence of certain subsemigroups and a homomorphism from a concrete semigroup, and determine minimal nonpure varieties. Next we characterize the cryptic ones in terms of their group elements and also by a homomorphism of a semigroup constructed in the paper. We also characterize groups and Clifford semigroups in a similar way by means of divisors. The paper also contains characterizations of completely semisimple inverse and of combinatorial inverse semigroups in a similar manner. It ends with a description of minimal non-$\mathcal {V}$ varieties, for varieties $\mathcal {V}$ of inverse semigroups considered. (English)
Keyword: inverse semigroup
Keyword: pure inverse semigroup
Keyword: cryptic inverse semigroup
Keyword: Clifford semigroup
Keyword: group-closed inverse semigroup
Keyword: pure variety
Keyword: completely semisimple inverse semigroup
Keyword: combinatorial inverse semigroup
Keyword: variety
MSC: 20M07
MSC: 20M20
idZBL: Zbl 06433716
idMR: MR3304800
DOI: 10.1007/s10587-014-0155-0
.
Date available: 2015-02-09T17:43:13Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144163
.
Reference: [1] Mills, J. E.: Combinatorially factorizable inverse monoids.Semigroup Forum 59 (1999), 220-232. Zbl 0936.20054, MR 1847288, 10.1007/PL00006005
Reference: [2] Pastijn, F., Volkov, M. V.: Minimal noncryptic e-varieties of regular semigroups.J. Algebra 184 (1996), 881-896. Zbl 0862.20046, MR 1407875, 10.1006/jabr.1996.0289
Reference: [3] Petrich, M.: Inverse Semigroups.Pure and Applied Mathematics. A Wiley-Interscience Publication Wiley, New York (1984). Zbl 0546.20053, MR 0752899
Reference: [4] Reilly, N. R.: Minimal non-cryptic varieties of inverse semigroups.Q. J. Math., Oxf. II. Ser. 36 (1985), 467-487. Zbl 0582.20038, MR 0816487, 10.1093/qmath/36.4.467
Reference: [5] Sen, M. K., Yang, H. X., Guo, Y. Q.: A note on $\mathcal{H}$ relation on an inverse semigroup.J. Pure Math. 14 (1997), 1-3. MR 1658187
.

Files

Files Size Format View
CzechMathJ_64-2014-4_16.pdf 280.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo